
Programmer’s Guide

Version 3.7 Users Guide

Revised 5/21/03

Copyright 1996-2003 by Wavelink Corporation. All rights reserved. This manual may not be reproduced, in
whole or in part, without prior written permission from Wavelink Corporation.

Wavelink‚ is a registered trademark of Wavelink Corporation.

Symbol‚, Spectrum One‚, and Spectrum24‚ are registered trademarks of Symbol Technologies, Inc.

Microsoft‚, MS‚, MS-DOS‚, Windows‚, Windows NT‚, Visual C++‚, Visual Basic‚, are either registered trademarks
or trademarks of Microsoft Corporation in the USA and other countries.

Winzip, Winzip Self Extractor are either registered trademarks or trademarks of Niko Mak Computing, Inc. in
the USA and other countries.

Wavelink Studio Users Manual

Revision 5/21/03

Table of Contents iii
Table of Contents

Chapter 1: Introduction 1
About this Document . 1

Assumptions . 1
Document Conventions . 2
Additional Information . 3

About Wavelink Studio COM . 3
Wavelink Server . 3
Wavelink Client . 4

Supported Devices . 4
Wavelink Development Library . 5

Widget Objects . 6

Chapter 2: Application Frameworks 9
Referencing the Wavelink COM Development Library 9

Including WaveLink Objects in Visual Basic 6.0 Projects 9
Including Wavelink Objects in other COM Languages 10

Chapter 3: Error Handling 11

Chapter 4: I/O Techniques 13
Handling Out-of-range Devices. 13
Optimizing RF Traffic . 14
Displaying Data on the Device Screen . 15
Using RFInput . 16

Invoking RFInput . 16
Waiting for User Input . 18
Processing Returned Input . 19
Input Modes . 20
Input Timeouts . 22

Using High Speed Display . 23
Storing Screens . 24
Storing Screen Templates . 25

Automating the Workflow . 27
Designing the Application . 27
Adding Bar Code Symbologies to your Applications 29
Using Bar Code Symbologies . 31
Adding Tones to Your Applications . 36

Navigating the Application . 38
Using Function Keys . 38
Using Menus . 40

Using Message Boxes . 42

iv Wavelink Studio COM
Chapter 5: Widgets 45
Using Widgets . 45

Handling Events . 48
Using Widget-based Dialog Boxes . 49
Using Menu-based Widgets . 50

Widget Transactions . 53
Positioning Widgets . 53
Hiding and Disabling Widgets . 54
Setting the Focus . 55

Chapter 6: Writing Applications for Multiple UIs 57
General Techniques . 57

Returning the Screen Dimensions . 57
Returning the Device Type . 58

Object-Oriented Techniques . 59
Program Overview . 60

Model-View-Controller Paradigm . 60
Finite State Machines . 62
Program Source Files . 63

Initializing the Application & Starting the Finite State Machine 64
Finite State Machine Classes . 67

Populating the State List and View List . 67
Implementing the Finite State Machine . 70

Presentation View Classes . 73
State Classes . 74
C++ Source Files . 75

WaveLinkPM.cpp . 75
CWaveLinkPMFSM.cpp . 76
CFSMBase.cpp . 78
CStateList.cpp . 79
CPresentationList.cpp . 80
CPresentationBase.cpp . 80
CStateBase.cpp . 80

Chapter 1: Introduction 1
Chapter 1: Introduction
This document presents an introduction to developing applications using the
Wavelink Studio COM Development Library.

The Wavelink Studio COM Development Library provides development
platforms such as Visual Basic, C++, and others with the ability to
communicate with devices on a wireless network. By including the Wavelink
Studio COM Development Library in your development platform, you can
build highly-efficient wireless applications with a minimum of effort.

About this Document

We are very interested in improving the Wavelink Development Library
documentation and welcome all criticisms and suggestions for improvement.
Please direct them to:

Wavelink Corporation, Development Library Documentation
11332 NE 122nd Way
Suite 300
Kirkland, WA 98034-6936
Phone: 425.823.0111
Sales: 1.888.697.WAVE (Sales Only)
Support: 1.888.699.WAVE (Support Only)
Fax: 425.823.0143
Email: documentation@wavelink.com

Assumptions

It is assumed that readers of this document are experienced in application
design for one or more programming languages and that they have some
familiarity with Visual Basic. It is also assumed that readers know how to
interact with their data source and understand the RF technology they are
using.

NOTE The sample code is primarily in Visual Basic. The programming
techniques, however, apply to programming languages supported by the
Wavelink Development Libraries, including C++.

2 Wavelink Studio COM
Document Conventions

This document uses the following typographical conventions:

• Courier New. Any time you interact with a Wavelink Studio COM option,
such as a button, or type specific information into an text box, such as a file
pathname, that option appears in the Courier New text style. This text
style is also used for keyboard commands that you press.

Examples:

Click Next to continue.

Press CTRL+ALT+DELETE.

• Bold. Any time this document refers to an option, such as descriptions of
the choices in a dialog box, that option appears in the Bold text style.

Examples:

Click Open from the File menu.

Click Download from the HexFiles menu.

• Italics. Any time this document refers to another section within the
manual, that section appears in the Italic text style.

Example:

See the Troubleshooting section for possible causes of this problem.

• Angle Brackets. Any time this document uses a placeholder, representing
an actual value such as a directory or class name, that section is enclosed
by angle brackets.

Example:

<classname>.<methodname>(TOKEN)

• Square Brackets. Any time this document references an optional element,
that section is enclosed by square brackets.

Chapter 1: Introduction 3
Additional Information

This document is not an exhaustive guide to developing wireless applications
with Wavelink. For more information about using Wavelink Studio COM, see
the following documentation:

• The Wavelink Studio COM Development Library

• The Wavelink Studio COM Server

• Wavelink Studio Client documentation (device-specific)

About Wavelink Studio COM

The Wavelink Development Library is one component in Wavelink Studio
COM. Wavelink Studio COM includes the following primary components:

• Wavelink Server

• Wavelink Client

• Wavelink Development Library

Wavelink Server

The Wavelink Server is a software application that provides direct access by
end users to wireless applications, and total control over application and
connection management in a wireless network.

The Wavelink Server creates an application instance for each new client that
logs onto the network. When a client logs on, the server and client negotiate a
connection using an Auto Discovery process that links the client to specific
Wavelink Port Monitors.

A Port Monitor is responsible for accepting connections from mobile devices.
As the name implies, each Port Monitor is assigned to a specific port on its
host system. When a mobile device attempts to connect to a wireless
application, the mobile device sends a connection request. This request is
routed through a Discovery Manager, which contains a list of all available
Port Monitors on a specific network subnet. If the Discovery Manager finds a
Port Monitor that matches the connection request, it sends the location of the
Port Monitor to the mobile device, allowing the device to connect to the
desired application.

4 Wavelink Studio COM
Wavelink Client

The Wavelink Client is a thin-client that resides on and interacts with the
mobile device and enables communication with the Wavelink Server. The
Wavelink Client installs directly into the Non-Volatile Memory (NVM) of the
mobile device.

When the clients boots up, it automatically connects to a server using the
Auto-Discovery mechanism. All applications that a user can access
automatically appear on a dynamic menu following sign-on.

The Wavelink thin-client software caches frequently-used configuration
parameters and menus, intelligently sharing the burden of a wireless
application with the application host.

The Wavelink Client also includes the following built-in features:

• Scanning control. Smart processing of barcode data at the handheld
depends on type of barcode scanned; this saves needless RF
communication back and forth between the handheld and host server.

• Error control. Keypad and scanner options limit user errors by controlling
the acceptable format for input, including barcode types.

• Tone control. Customized handheld “tones” direct users through their
work, improving worker productivity by eliminating the need to look at
the display.

Supported Devices

WaveLink supports the following device types, based on OS:

• DOS and Embedded

• Palm OS

• Windows CE/Pocket PC

NOTE For more information about specific devices supported, go to http://
www.wavelink.com/downloads/.

http://www.wavelink.com/downloads/
http://www.wavelink.com/downloads/

Chapter 1: Introduction 5
Wavelink Development Library

The Wavelink Development Library is the application programming interface
(API) that allows custom application development for a wireless network.

All Wavelink-based applications incorporate a multi-threaded, multi-instance
architecture, making application design more efficient while maximizing run-
time performance. The Wavelink Development Library allows you to build
customized wireless applications. The Wavelink Development Library
permits a wide range of application developers to migrate their applications
to wireless networks.

Developing applications using the Wavelink Development Library provides
the following benefits:

• Simplified coding. The Wavelink API handles all the wireless network
technical issues.

• Built-in hardware support. Custom applications automatically run on all
802.11 based LAN or GPRS WAN wireless devices.

• Hardware upgrade support. Heterogeneous hardware devices and
operating systems with various UIʹs (stylus, key, or touch-based) can be
deployed.

• Device Control. Wavelink applications allow you to take full control of
your mobile devices through the built-in features of the Wavelink Client.

The Wavelink Development Library includes numerous objects tailored for
wireless application development, including the following:

RFBarcode Object

The RFBarcode object allows you to create barcode configurations that define
valid and invalid barcode symbologies to associate with application input
calls.

RFFile Object

The RFFile object provides basic file input/output capabilities for remote
mobile devices.

RFIO Object

The RFIO object offers basic input and output methods that function over a
Wavelink wireless network.

6 Wavelink Studio COM
RFMenu Object

The RFMenu object creates menus on a mobile device and returns the user
selected option.

RFError Object

The RFError object defines and displays simple message boxes within your
application.

RFTerminal Object

The RFTerminal object provides current terminal state information and alters
certain terminal options.

RFTone Object

The RFTone object utilizes the audio capabilities of a remote mobile device
from your applications.

Widget Objects

The Wavelink Development Library includes the following objects that are
supported on GUI-based devices:

WaveLinkFactory Object

The WaveLinkFactory object contains the methods necessary to build all
types of widget objects.

WaveLinkMenubarInfo Object

The WaveLinkMenubarInfo object contains the methods necessary to create
and manipulate a list of menus that a menubar widget can contain.

WaveLinkScribblePad Object

The WaveLinkScribblePad object displays a drawing pad and saves the newly
created drawing to a specific (.JPG or .BMP) file.

WaveLinkSignon Object

The WaveLinkSignon object displays a screen that prompts the user for a
name and password and uses that information to verify or deny access to an
application.

WaveLinkWidget Object

The WaveLinkWidget object contains the methods necessary to build and
modify all types of widget objects.

Chapter 1: Introduction 7
WaveLinkWidgetCollection Object

The WaveLinkWidgetCollection object logically groups widget objects
together.

8 Wavelink Studio COM

Chapter 2: Application Frameworks 9
Chapter 2: Application Frameworks
This section includes information for including the library in each respective
development environment. For additional information and programming
considerations, see the Wavelink Development Library documentation.

NOTE For information about running Wavelink applications from the server,
see the Wavelink Server documentation.

Referencing the Wavelink COM Development Library

Before developing wireless applications, you must include the Wavelink
COM Development Library in your specific development environment. This
provides access to the custom objects and methods necessary for wireless
application development.

Including WaveLink Objects in Visual Basic 6.0 Projects

To access the Wavelink Development Library in Visual Basic, you reference it
in your project.

To include the Wavelink Development Library in a Visual Basic Project:

1 Open the Visual Basic project to which you want to add the Wavelink
Development Library.

2 Remove the default form.

In the Visual Basic Project window, right-click the default form and select
Remove Form1.

3 Add a module to the project.

In the Visual Basic Project window, right-click the project and select Add >
Module.

4 Reference the Wavelink Development Libraries

From the Project menu, select References.

Enable the WaveLink and WavelinkOLE checkbox and click OK.

10 Wavelink Studio COM
5 In your project, declare any objects you plan to use.

Example: Public wlio As New RFIO creates a public instance of the
RFIO Object.

Including Wavelink Objects in other COM Languages

You can access the Wavelink Development Library in any COM-based
language such as C++. The libraries are located in the following directory:

<installpath>\Include\Libs

In your programming environment, reference the Wavelink and
WavelinkOLE type libraries and dynamic link libraries (.dll file extension) as
instructed in the documentation for your specific programming environment.

Chapter 3: Error Handling 11
Chapter 3: Error Handling
You can check for returned error values when calling a WaveLink
Development Library method within your application. It is of absolute
importance to check for returned error values after making an input call such
as RFInput or GetEvent. The reason for this is that proper functioning of your
wireless applications is dependent upon certain returned error values.

For example, on a disconnect command from the WaveLink Administrator a
specific error message is returned to your application. This error message is
returned to the first WaveLink function that communicates with the mobile
device (for example, an RFIO method) before the device is physically
disconnected from the network. Every subsequent WaveLink function
following disconnect will then return the error message. Upon receiving this
error message, you must instruct the application to exit. If this error message
is not trapped at this time, the application can get caught in a loop and
consume remaining system resources while waiting for further user input
from a disconnected device.

The Wavelink COM Development Library uses the RFGetLastError method
to return error values. The following code snippet shows an example of using
this method with an RFInput method call.

' VB Sample Code
wlio As New RFIO
nError As Integer
.
.
.
 ' In this example, we use an RFInput call
 pszWelcomeIn = wlio.RFInput(pszWelcomeInDefault, 1, 1, ø
 33, "BarCode", WLCAPSLOCK, WLNO_RETURN_BKSP)
 ' It is critical to check for errors after communication
 ' occurs between the app and the RF device.
 nError = wlio.RFGetLastError
 If nError <> WLNOERROR Then
 GoTo ExitApp
 Else
 ' process input

The RFGetLastError method returns WLNOERROR when no error occurred
during the method invocation. The method returns a variety of constants that
indicate specific errors. You can use the method as needed to check for
specific errors (for example, when you send data to a port), for debugging

12 Wavelink Studio COM
purposes, or in order to execute conditional actions. Most of the objects in the
Wavelink Develoment Library contain an RFGetLastError member function.
See the RFGetLastError method in the COM Development Library
documentation for more information.

NOTE The Wavelink COM Development Library also returns a function status
on selected methods. See the reference information on specific methods in the
COM Development Library for more information.

Chapter 4: I/O Techniques 13
Chapter 4: I/O Techniques
In addition to handling the technical issues associated with wireless
communication, Wavelink incorporates numerous built-in features that
directly support the specialized I/O requirements of wireless applications.
These specialized requirements include the need to handle out-of-range
mobile devices and to limit radio traffic while increasing an application’s
efficiency.

In the following sections, you will learn about automated features and
programming techniques specific to Wavelink I/O:

• How Wavelink handles out-of-range devices

• How Wavelink optimizes the datastream

• How to print data on the mobile device screen

• How to return input from the device, using built-in Wavelink options for
maximum control.

• How to take advantage of the high speed display features included with
Wavelink.

• How to automate workflow for end users by building intuitive
applications that incorporate barcode symbologies and audio tones.

• How to incorporate navigational aids such as function keys and menus.

• How to use message boxes to display information to the user.

Handling Out-of-range Devices

Wavelink Studio COM tailors all aspects of I/O specifically for the wireless
environment and takes advantage of the Wavelink thin-client/server
architecture. Because users can roam in and out of range in wireless
environments, Wavelink incorporates features to automatically handle these
events within its architecture.

Wavelink Studio COM follows a continuously-connected, server-side
architecture that incorporates an intelligent thin client on the mobile device.
In this model, data travels from the mobile device through the server to the

14 Wavelink Studio COM
application and vice-versa. Messaging from the application to the server takes
place from the user application through the API.

In the Wavelink architecture, the duty cycle for the application/server is
between 1% and 10%, and the processing time is on the order of milliseconds.
The application/server wait time, however, can be several seconds or longer,
while the application waits for the user to respond to an input prompt.

No unsolicited data transmits during the application/server wait time; the
server blocks the transmission of data, thus maintaining the IP stack, while
waiting for returned input. This provides considerable control over the
wireless network, as the mobile device can roam out of range without
dropping the connection. Before responding to the server with user input, the
client buffers the data and verifies its ʺrangeʺ status; if the client is out of
range, it displays a message directing the user to move within range. When
the user complies, the client automatically completes the input call by
sending the data.

Optimizing RF Traffic

In the Wavelink architecture, the API stores data destined for the mobile
device in an output queue, sending the data to the device when the RF packet
reaches 100 bytes in size (or until the application makes an input call). By
incorporating this design, the API combines multiple method calls into single
RF packets, greatly reducing wireless network traffic.

In addition, some Wavelink objects use built-in Wavelink Client features to
speed the application by first storing and then using files on the mobile
device. This methodology further reduces network traffic. The Wavelink
objects and the file extensions for the files they store are as follows:

When storing and accessing files using these objects, it is not necessary to
include the extensions. However, if you interact with these files using the

WaveLinkAuxPort object .CFG

RFIO object .SCR

RFMenu object .MNU

RFTone object .TON

RFBarcode object .BAR

Chapter 4: I/O Techniques 15
RFFile object, it is necessary to include the appropriate file extension (or ʺ.*ʺ
for all file extensions). All filenames can be up to eight characters in length.

Displaying Data on the Device Screen

The RFPrint method of the RFIO object allows you to print static or dynamic
data on the mobile device screen. The following code shows an example of
using RFPrint. In this example, you position the display text on the screen and
instruct RFPrint to clear the screen before displaying text.

Public wlio As New RFIO
.
.
.
wlio.RFPrint 1, 0, " Enter Product ", _
 WLCLEAR + WLREVERSE

The arguments set within the preceding RFPrint call have the following
effects:

New data overwrites old data on the device screen on a cell-by-cell basis.
However, to clear all or part of a screen that you do not specifically overwrite,
you must use one of the output modes included with RFPrint, such as
WLCLEAR or WLCLREOLN.

1 Sets the starting left coordinate for the input prompt,
in cell coordinates (columns). Columns are
numbered from the left, starting with column 0.

0 Sets the starting top coordinate for the input prompt,
in cell coordinates (rows). Rows are numbered from
the top, starting with row 0.

WLCLEAR Sets an output mode for the RFPrint call. Output
modes modes can: clear all or part of the screen
before displaying output, format the output, or
extend the functionality of the RFPrint method. You
can use multiple output modes within the RFPrint
call. For example, by passing WLCLEAR +
WLREVERSE, as shown in this argument, RFPrint
clears the screen before displaying the text and
displays the text in reverse color.

16 Wavelink Studio COM
The API sends data to the device when the output buffer reaches 100 bytes or
when the application makes an input call. The next section shows how to add
an input call to your application using RFInput.

NOTE For more information about RFPrint, see the Wavelink Studio COM
Development Library documentation.

Using RFInput

The RFIO object handles the majority of I/O requirements in a Wavelink
application, and the RFInput method is the principle means by which it
returns user input. Like all Wavelink input methods, RFInput automatically
incorporates blocking to maintain the wireless connection.

RFInput displays an input prompt on the screen of the mobile device, at
coordinates specified within the RFInput call.

Using the RFInput method involves several aspects:

1 Invoking RFInput to display output.

2 Waiting for user input.

3 Processing returned input.

Invoking RFInput

Before invoking RFInput, you typically instruct the user to take action. In this
example, RFPrint calls instruct the user to enter the item quantity.

Public wlio As New RFIO
Dim inQty As String
.
.
.

wlio.RFPrint 0, 0, " Enter Item ", _
 WLCLEAR + WLREVERSE
wlio.RFPrint 0, 1, " Quantity ", WLREVERSE

Next, use RFInput to display an input prompt. The inQty variable contains
the default value. In most cases, you simply pass an empty string (ʺʺ) for the

Chapter 4: I/O Techniques 17
default value, but here you pass a variable to set the default value to ʺ1ʺ
(string value).

inQty = "1"
inQty = wlio.RFInput(inQty, 4, 2, 4, "", NORMALKEYS,_
 WLNO_RETURN_BKSP + WLNUMERIC_ONLY)
' Add error handling code.

When the application invokes the RFInput method, the API automatically
clears the output buffer, sending data to the mobile device for immediate
display.

Figure 4-1 shows how the preceding code will appear on the mobile device.

Figure 4-1. Example of a Screen Using RFInput

The arguments set within the previous RFInput call have the following
effects:

inQty Contains the display value to appear in the input
prompt. When the user presses Enter without keying
or scanning data, RFInput returns a Chr$(13) to the
application. The default value itself is NOT returned
to the application. Consequently, to process the
user’s response based on a default value, you must
first process input based on the Enter key, Chr$(13).

4 Sets the maximum input length to 4 characters.
RFInput automatically returns input when the input
reaches the maximum length. This argument also
defines the number of fill characters that appear in
the input prompt—underscores by default. (Note:
You can change the default fill character using the
SetFillCharacter method.)

18 Wavelink Studio COM
See the following sections for more information about RFInput:

• Waiting for User Input on page 18

• Processing Returned Input on page 19

Waiting for User Input

By default, RFInput returns input from the user when one of the following
conditions occur:

• The user presses the Enter key or a function key combination (for example,
Ctrl+X, an arrow key, F1 to F9).

• The user scans a barcode.

2 Sets the starting left coordinate for the input prompt,
in cell coordinates (columns). Columns are
numbered from the left, starting with column 0.

4 Sets the starting top coordinate for the input prompt,
in cell coordinates (rows). Rows are numbered from
the top, starting with row 0.

ʺʺ Defines the barcode configuration for the RFInput
call. The empty string (ʺʺ) instructs RFInput to use
the default barcode configuration. See Automating
the Workflow on page 27 for more information about
working with barcodes. (Note: If you want to
prevent scanned input, pass WLDISABLE_SCAN as
the input mode argument).

NORMALKEYS Defines the keyboard shift state, either normal
(NORMALKEYS) or all caps (CAPSLOCK).

WLNO_RETURN_
BKSP

Defines the input mode for the input prompt. Input
modes can control or alter the actual input, or extend
the functionality of the RFInput method. Examples
of using different input modes are provided later in
this section. You can use multiple input modes
within the RFInput call, for example, by passing
WLNO_RETURN_BKSP + WLNUMERIC_ONLY in
this argument.

Chapter 4: I/O Techniques 19
• Input reaches the maximum input length, as defined within the RFInput
call.

• The user presses the Backspace key when the ʺcursorʺ is in the first
position of the input prompt.

Using input modes such as WLNO_RETURN_BKSP, you can change the
default conditions in which RFInput returns input. See Changing the
Conditions for Returning Input on page 21 for more information.

Processing Returned Input

In the input call shown previously (see Invoking RFInput on page 16),

inQty = wlio.RFInput(inQty, 16, 2, 4, "", NORMALKEYS,_
 WLNO_RETURN_BKSP + WLNUMERIC_ONLY)

inQty will contain user input. In addition to returning the user input, RFInput
returns an input type. You normally use the input type when processing
returned data from the RFInput call. RFInput returns one of seven possible
input types, including the following:

WLKEYTYPE - Keypad/keyboard input

WLSCANTYPE - Scanned input

WLCOMMANDTYPE - Function key input

When processing input, use the LastInputType method to return the input
type. The following example shows how to process input from RFInput using
a Case statement and the input type. In this case, the code processes the
default quantity of ʺ1ʺ by re-assigning the default quantity to inQty.

Dim inType As Integer
.
.
.
inType = wlio.LastInputType()
 Select Case inType
 Case WLKEYTYPE ' keyboard
 If inQty = Chr$(13) Then ' [ENTER] key
 inQty = "1"
 ProcessQtyIn ' input handling procedure
 Else
 ProcessQtyIn

20 Wavelink Studio COM
 End If
 Case WLCOMMANDTYPE ' command key
 .
 .
 .
 Case Else
 End Select

Input Modes

You can easily extend the efficiency of I/O in your application by using input
modes to control the input peripherals on the mobile device (such as the
keyboard and scanner). In addition, input modes for the feature-rich RFInput
method allow you to: control the content of input, define how characters echo
in the input prompt, change the conditions in which RFInput returns input to
the application, and carry out other miscellaneous actions.

Controlling the Input Type

To prevent users from passing bad data to your application, you can disable
input peripherals on the device. For example, at a prompt where you want
the user to scan an item, you can easily disable the keypad and the function
keys, forcing the user to use the scanner. To limit the type of input from the
user, pass one or more of the following arguments within the RFInput call:

• WLDISABLE_SCAN. Disables the scanner on the mobile device.

• WLDISABLE_KEY. Disables the keypad on the mobile device.

• WLDISABLE_FKEYS. Disables the function keys on the mobile device.

The following line of code shows an example of using these input modes:

inQty = wlio.RFInput(inQty, 16, 2, 4, "", NORMALKEYS,_
 WLNO_RETURN_BKSP + WLDISABLE_SCAN + _
 WLDISABLE_FKEYS)

Controlling the Content of Input

You can use input modes that limit the content of input. For example, if you
want the user to enter a quantity, you can easily set RFInput to disable all
alpha characters on the keyboard, forcing the user to enter a number.

To limit the content of input, pass one of the following input modes:

Chapter 4: I/O Techniques 21
• WLALPHA_ONLY. Disables numeric characters on the keypad.

• WLNUMERIC_ONLY. Disables the alphabetic characters on the keypad.

Changing the Conditions for Returning Input

You can also use input modes that change the conditions in which RFInput
returns data.

• WLNO_RETURN_FILL. Input returns only when the user presses the
Enter key. Input does not return when user input reaches the maximum
length. Use this input mode if your input length requirements exceed the
available space on the screen of the mobile device.

• WLFORCE_ENTRY. Input returns only when the user enters an actual
value at the prompt. Input does not return when the user presses Enter,
unless an actual value has been previously keyed in.

• WLNO_RETURN_BKSP. Input does not return when the user presses the
Backspace key while the ʺcursorʺ is in the first position of the input
prompt. Use this input mode to prevent the accidental return of input by
users who are manually correcting their input. For example, if a user keys
in four characters they may accidentally key in five Backspace characters
to fix a mistake. RFInput would normally return input on the fifth
occurrence of the Backspace key. WLNO_RETURN_BKSP is also useful for
users who habitually press the Backspace key because they expect to move
to a previous field on the screen.

NOTE Input modes that disable options on the device (for example,
WLDISABLE_FKEYS) also effectively change the conditions in which
RFInput returns input.

Formatting Echoed Characters in the Input Prompt

When the user types in text at the input prompt, you can define the characters
echoed on the screen of the mobile device.

• WLECHO_ASTERISK. Echoes (i.e., displays) all characters on the device
using asterisks. This input mode is useful for hiding passwords from
casual observers.

22 Wavelink Studio COM
• WLSUPPRESS_ECHO. Disables the echoing of characters on the device.
You might want to use this mode for passwords or situations where the
user can press any key.

Other Options

• WLCLR_INPUT_BUFFER. Clears the input buffer of pending data. Use
this RFInput mode following the use of timed messages created with the
RFError object. This prevents the user from entering unwanted data into
the input buffer after the message expires.

• WLBACKLIGHT. Turns on the display backlight on the mobile device
when the application invokes RFInput.

• WLIGNORE_CRLF. Includes carriage return (CR) or line feed (LF)
commands within a single input packet. By default, when input contains
ASCII character codes for a carriage return or line feed, RFInput breaks the
input into separate input packets. If a barcode contains internal carriage
returns or line feeds, you must use WLIGNORE_CRLF.

See the Wavelink Studio COM Development Library documentation for
additional input mode options.

Input Timeouts

By default, RFInput prompts do not expire. However, you might want to set
an expiration time for the prompt so that you can continue the application.
Use the SetInputTimeout method to set the default, passing in the number of
seconds that must elapse before the prompt expires.

Public wlio As New RFIO
Dim inData As String
.
.
.
wlio.SetInputTimeout 5
inData = wlio.RFInput(...)
' Add error handling code.

When an RFInput prompt expires, it returns an input type of WLTIMEDOUT
to the application. The following code fragment shows how you can
incorporate this into your Case statement.

Dim inType As Integer
.

Chapter 4: I/O Techniques 23
.

.
inType = wlio.LastInputType()
 Select Case inType
 Case WLTIMEDOUT ' prompt expired
 ContinueProcessData

Using High Speed Display

Wavelink provides high-speed display through the RFIO object. This
methodology allows you to store screen files on the mobile device and—
when they are needed—retrieve them for immediate display. Whenever you
can retrieve stored information from the device memory, you reduce RF
traffic and speed up your application, allowing the greatest number of users
rapid access to your applications.

The PushScreen, PullScreen, and RestoreScreen methods of the RFIO object
provide the high-speed display functionality. The PushScreen method is the
starting point; use this method to store the current screen as a file on the
device with a .SCR extension.

NOTE It is recommended that you use the PushScreen method whenever you
might re-use a screen. For screens that contain a significant amount of text,
such as a Help screen, it is especially important to incorporate the Push/Pull/
RestoreScreen methodology.

When you need to display the stored screen, you can use either the PullScreen
or RestoreScreen method. PullScreen displays the specified screen while
deleting it from the mobile device. RestoreScreen also displays the specfied
screen, but does not delete it from the device. For this reason, RestoreScreen is
the optimal choice when you design the application for multiple re-displays.

The following sections contain code samples that demonstrate how to:

• Store a screen

• Store a screen template

24 Wavelink Studio COM
Storing Screens

The following code shows how you can use high-speed techniques for a help
screen in your application. In this example, you save the current screen as a
.SCR file on the device (CurntScr), then check to see if the application has
previously displayed the help screen. If it has, you can immediately restore
the help screen with RestoreScreen. Typically, you nest the following code
within the Case statement (not shown) after the user presses the F1 function
key.

NOTE The following code uses the RFTerminal object to return the total
number of display rows on the device. See the WaveLink Development Library
documentation for more information about this object.

Public wlio As New RFIO
Public wlterm As New RFTerminal
Dim firstItemHelp As Boolean
.
.
.
wlio.PushScreen "CurntScr"
If helpPushed = False Then
 wlio.RFPrint 0, 0, " Enter the Item ", WLCLEAR + WLNORMAL
 wlio.RFPrint 0, 1, " to Price Check ", WLNORMAL
 wlio.RFPrint 0, (wlterm.TerminalHeight - 1), _
 " Press Any Key ", WLREVERSE + WLFLUSHOUTPUT
 wlio.PushScreen "helpscr", WL_IGNOREWIDGETS
 helpPushed = True
Else
 wlio.RestoreScreen "helpscr"
End If
wlio.GetEvent
' Add error handling code.
wlio.PullScreen "CurntScr"

Because the Wavelink Server does not send data to the mobile device until the
RF packet reaches 100 bytes in size (or until the application makes an input
call), it is important to clear the output queue before using PushScreen. This
guarantees that the screen you store on the device will be complete. As shown
in the preceding example, use the WLFLUSHOUTPUT output mode within
an RFPrint call to clear the output queue.

Chapter 4: I/O Techniques 25
As an alternative to using WLFLUSHOUTPUT, you can use the
RFFlushoutput method to clear the output queue. See the Wavelink Studio
COM Development Library documentation for more information.

In the preceding code, the GetEvent method effectively pauses the application
before restoring the original screen (CurntScr). GetEvent returns a single
input event from the user (single key, function key combination, scan- or
widget-based event). In this case, your intention is to pause the application
while the user reads the help screen.

wlio.GetEvent

After the user presses a random key, you restore the original screen. You can
use either RestoreScreen or PullScreen to restore the original screen. In this
case, because the application stores the current screen each time the user calls
for Help, you don’t need to keep the screen file, so you delete it with
PullScreen.

wlio.PullScreen "CurntScr"

As part of your cleanup operation for the application, delete the help screen
file from the device using the RFFile object:

Public wlFile As New RFFile
.
.
.
wlFile.RFDeleteFile("ItemHelp.scr")

Storing Screen Templates

In addition to storing complete screens with PushScreen, you can use it to
store screen “templates”—partial screens which can be filled with dynamic
data on the fly.

The following code shows an example of storing a screen template for an
“item lookup” screen in an application:

wlio As New RFIO
.
.
.
wlio.RFPrint 0, 0, " Wavelink ", WLCLEAR
 + WLREVERSE

26 Wavelink Studio COM
wlio.RFPrint 0, 1, " Price Check Demo ", WLNORMAL
wlio.RFPrint 0, 3, "Item: ", WLNORMAL
wlio.RFPrint 0, 5, "Desc: ", WLNORMAL
wlio.RFPrint 0, 8, "Cost: ", WLNORMAL
wlio.RFPrint 0, 10, "Qty : ", WLNORMAL
wlio.RFPrint 0, 12, "On Order: ", WLNORMAL
wlio.RFFlushoutput
wlio.PushScreen "LkupScrn"

The application stores the screen as a .SCR screen file on the device named
LookupScrn.

When you show the LookupScrn, you can display dynamic data from your
database using RFPrint calls, and restore the screen file template you
previously created:

Public wlio As New RFIO
Dim itemID As Integer
Dim itemDesc As Integer
Dim itemCost As Integer
Dim itemQty As Integer
Dim itemOnOrder As Integer
.
.
.
' Use RFInput to obtain an Item code.
' Obtain the required information from your database
' and store:
' the item ID in itemID,
' the item description in itemDesc,
' the price in itemCost,
' the quantity in itemQty,
' the number on order in itemOnOrder.
.
.
.
wlio.RestoreScreen “LkupScrn”
wlio.RFPrint 6, 5, itemID, WLNORMAL
wlio.RFPrint 6, 3, itemDesc, WLNORMAL
wlio.RFPrint 0, 8, itemCost, WLNORMAL
wlio.RFPrint 0, 10, itemQty, WLNORMAL
wlio.RFPrint 0, 12, itemOnOrder, WLNORMAL

Chapter 4: I/O Techniques 27
wlio.GetEvent

Automating the Workflow

Because many wireless applications must support barcode scan events,
Wavelink includes support for high-efficiency scan-based applications.
However, you must consider several issues when designing these
applications.

First, scan-based applications typically involve interaction with a database. It
is vital to eliminate errors in such cases to avoid corrupting your database.
For example, end users might scan the wrong item or scan the wrong barcode
on the correct item. Product labels increasingly contain multiple barcodes, so
this concern is critical. You can use Wavelink’s built-in barcode features to
easily verify that the correct barcode has been scanned, actually disabling all
barcodes that do not meet a specific barcode definition.

The second issue you must consider when designing scan-based applications
is that many of these applications must also support high-volume
transactions. In these cases, it is vital to build screens that process scanned
information with maximum efficiency. The examples in this section are
excerpts from an event-driven cycle count application. The goal is to build a
highly intuitive application that allows the user to quickly and efficiently scan
locations, items, and quantities from a single RFInput prompt.

The following sections contain sample code related to four development
tasks:

• Designing the Application

• Adding Bar Code Symbologies to your Applications

• Using Bar Code Symbologies

• Adding Tones to Your Applications

Designing the Application

This section provides a brief overview of the cycle count application, showing
how it appears to the end user, and describing what can happen at each stage.
Figure 4-2 shows how the application initially appears on the mobile device.

28 Wavelink Studio COM
NOTE See Automating the Workflow on page 27 for an overview of scan-based
applications.

Figure 4-2. The Cycle Count Application Screen, Initial State

In this application, the user is forced to either scan a location or hit F-9 to exit
when the screen initially appears. The application does not accept any other
input.

When the user enters a location, the application attempts to validate the
location. If the user enters an invalid location, the application displays an
error and loops without changing anything. However, if the user enters a
valid location, the valid location appears following the Loc: output field.
Figure 4-3 shows how the screen appears at this point.

Figure 4-3. The Cycle Count Screen with Valid Location

After looping, the application resets the barcode configuration to allow both
location and item barcode scans. If the user scans another location at this
point, the application processes the location as it did previously. If, on the
other hand, the user scans an item, the application attempts to validate the

Chapter 4: I/O Techniques 29
item. If the item is invalid, the application displays an error and loops without
changing the location. If the item is valid, the application displays the item
description after the Item: output field and increments the item quantity by
1 in a table or recordset. Figure 4-4 shows how the screen might appear at this
point.

Figure 4-4. The Cycle Count Screen with Valid Item

Once the user scans a valid item, the application allows any of the following
input: a new location, a new item, the same item (in which case the
application increments the quantity by 1), or a keyed-in quantity.

Whenever the user enters a new location, the application stores the current
item quantity in the database.

The following sections contain the code excerpts that make this application
work:

• Adding Bar Code Symbologies to your Applications

• Using Bar Code Symbologies

Adding Bar Code Symbologies to your Applications

Before you can write code to build the cycle count screen, you must create one
or more barcode configurations. A barcode configuration is a file that defines
the decode state, expand state, minimum length, and maximum length for
one or more specific barcode symbologies. The features specific to each
barcode symbology are as follows:

• Decode State. Determines whether the scanner decodes a scanned barcode
of the specified symbology.

30 Wavelink Studio COM
• Expand State. Determines whether the scanner expans a scanned barcode
of the specified symbology. The expand state is relevant for UPC-E0
barcode types and should be set to False in all other barcode symbologies.

• Minimum Length. Defines the minimum length of a scanned barcode of
the specified symbology.

• Maximum Length. Defines the maximum length of a scanned barcode of
the specified symbology.

The first step in your program is to ʺpushʺ the default barcode configuration.
Mobile devices enabled for barcode use typically contain a generic, default
barcode configuration. Unlike pushing screens, the reason you push a
barcode configuration is not to speed the application, but to replace it with
one or more custom barcode configurations—ones that are ideal for your
application needs.

Public wlbar As New RFBarcode
.
.
.
wlbar.PushBarcode "Defltbar"

After pushing the default barcode configuration, create the first barcode
configuration you will need—in this example a barcode configuration named
Code39. Code_39 barcodes represent warehouse locations. Before adding the
barcode, clear the current barcode object of any barcode symbology
definitions.

wlbar.ClearBarcodes
wlbar.AddBarcode CODE_39, False, DECODEON, 12, 12

Bar code configurations are normally attached to RFInput calls. Before you
can use a barcode configuration within an RFInput call, however, you must
store it. When you call the StoreBarcode method, you store the specified
barcode configuration as a .BAR file on the mobile device. The second
argument passed in StoreBarcode (BCDISABLED) defines the default decode
state for all other barcodes NOT explicitly allowed. In the following example,
BCDISABLED disables all barcodes except Code_39 barcodes of length 12.

Chapter 4: I/O Techniques 31
wlbar.StoreBarcode "Code39", BCDISABLED

Next, add a second barcode symbology definition to the current barcode
object and store it as a new barcode configuration. The new barcode
configuration, Codeboth, accepts either a Code_39 barcode of length 12 or a
UPC_A barcode of any length. If you want to remove the minimum and
maximum length restriction from the symbology, pass arguments of 0 for the
minimum and maximum length.

wlbar.AddBarcode UPC-A, False, DECODEON, 0, 0
wlbar.StoreBarcode "CodeBoth", BCDISABLED

In this application, UPC_A barcode symbologies represent item descriptions.
As you will see later, by creating a barcode configuration that accepts both
Code_39 and UPC_A barcodes, you can scan either a warehouse location or
an item from a single prompt, and process each accordingly.

To use the barcode symbologies you have created, see Using Bar Code
Symbologies.

Using Bar Code Symbologies

To invoke the main screen for the cycle count application, you add the
following code:

Public wlio As New RFIO
Public wlterm As New RFTerminal
.
.
.
wlio.RFPrint 0, 0, " Cycle Count ", WLREVERSE
wlio.RFPrint 0, 2, "Loc : ", WLNORMAL
wlio.RFPrint 0, 3, "Item: ", WLNORMAL
wlio.RFPrint 0, 4, "Qty : ", WLNORMAL
wlio.RFPrint 0, (wlterm.TerminalHeight - 1), _
 " F-9 to exit ", WLREVERSE

When the application displays the cycle count screen, the static output fields
remain on screen until you clear them or overwrite them. Figure 4-5 shows
how this screen initially appears on the mobile device.

32 Wavelink Studio COM
Figure 4-5. The Cycle Count Application Screen, Initial State

Your next step is to build a loop structure that contains three subroutines. The
three subroutines handle the following tasks: preparing the RFInput call, the
invoking RFInput and returning input, and processing the returned input.

Dim AppFinish As Boolean
AppFinish = False
.
.
.
Sub InputLoop()

 While AppFinish = False
 PrepareInput
 ReadData
 ProcessInput
 Wend

End Sub

The first subroutine, PrepareInput(), determines whether the user has
previously scanned a valid location or item, and it sets the barcode type and
the input mode to be passed into the RFInput call accordingly. When the
application initially processes this code, the current location is an empty
string (ʺʺ). Therefore, to force the user to scan a Code_39 location, you set the
barcode configuration to Code39 and disable the keypad.

On subsequent iterations of PrepareInput(), the current location is set, but the
current item might be an empty string. If the current item is an empty string,
you set the barcode configuration to CodeBoth. This allows the user to scan
either an item or a new location. Finally, if a valid item was previously set,
you want the user to scan an item, key in a quantity, or scan a new location. In

Chapter 4: I/O Techniques 33
this case, you set the barcode configuration to CodeBoth and do NOT disable
the keypad.

Here is the code for the PrepareInput() subroutine:

Dim barCfg As String
Dim inMode As Int
Dim displVal As String
Dim currentLoc As String
Dim currentItem As String
currentLoc = ""
currentItem = ""
.
.
.
Sub PrepareInput()
 If currentLoc = "" Then
 barCfg = "Code39"
 inMode = WLDISABLE_KEY + WLNO_RETURN_BKSP
 displVal = "Loc:"
 ElseIf currentItem = "" Then
 barCfg = "CodeBoth"
 inMode = WLDISABLE_KEY + WLNO_RETURN_BKSP
 displVal = "Loc|Item:"
 Else
 barCfg = "CodeBoth"
 inMode = WLNO_RETURN_BKSP
 displVal = "Loc|Item|Qty:"
 End If
End Sub

The next subroutine, ReadData(), invokes RFInput and stores the returned
data. This subroutine uses the values previously set for the current barcode
configuration and input mode. You store the returned data, the returned
input type, and the returned barcode type in three variables. To return the
barcode type, use the LastBarcodeType method.

wlio As New RFIO
Dim inData As String
Dim inType As Integer
Dim barType As Integer
.
.
.
Sub ReadData()

34 Wavelink Studio COM
 inData = wlio.RFInput(displVal, 15, 0, 6, NORMALKEYS, barCfg,
_
 inMode)
 ' Add error handling code.
 inType = wlio.LastInputType()
 barType = wlio.LastBarcodeType()

End Sub

To process input returned from the RFInput call, create the ProcessInput()
subroutine. In this subroutine, if the user presses F9, you set the variable,
AppFinish, to True and exit the subroutine. If the user scans a Code_39, you
must validate the location. A valid location returns True, in which case you
update the screen with the current location and store the current table or
recordset in your database. Invalid locations return False, in which case you
exit the subroutine.

If, on the other hand, the user scans something other than Code_39, it must be
an item (UPC_A). In this case, you validate the item and update the screen
with the current item. Then you update the item in the table with a quantity
of 1.

Finally, if the user keys in a value, you update the quantity in the table with
the keyed in value. Because you already automatically incremented the
quantity by 1 when the user first scanned the item, you can subtract 1 from
the keyed-in quantity.

The code for the ProcessInput() subroutine is shown here:

Dim inQty As Integer
.
.
.
Sub ProcessInput()
 If inType = WLCOMMANDTYPE Then
 If data = 9 Then
 AppFinish = True
 StoreItemQty
 End If
 Exit Sub
 ElseIf inType = WLSCANTYPE Then
 If barType = Code_39
 If ValidateLocation() Then
 wlio.RFPrint 6, 2, currentLoc, WLNORMAL + WLCLREOLN
 wlio.RFPrint 6, 3, "", WLNORMAL + WLCLREOLN + _

Chapter 4: I/O Techniques 35
 WLFLUSHOUTPUT
 StoreItemQty ’ Store item/quantity info
 ’ from previous location in
 ’ your database.
 currentItem = ""
 End If
 Exit Sub
 Else
 If ValidateItem() Then
 wlio.RFPrint 6, 3, currentItem, WLNORMAL + _
 WLCLREOLN + WLFLUSHOUTPUT
 inQty = 1
 UpdateQty inQty ’ Update item quantity in your
 ’ table by 1.
 End If
 End If
 Else
 inQty = CInt(inData) ’ Store keyed input as a string
 UpdateQty inQty-1 ’ Update item quantity in your
 ’ table by keyed in value -1.
 End If
End Sub

The RFPrint call from the preceding code, shown again here,

wlio.RFPrint 6, 3, currentLoc, WLNORMAL + WLCLREOLN

uses WLCLREOLN as an output mode; WLCLREOLN clears the output to
the end of the line, row 3. Because the user might have previously scanned
another location, it is important to clear the old location before displaying the
new one. Use the same methodology to replace the old item with a new one.

NOTE Before you can display the valid location and item with RFPrint, you
must store the valid location and item in the relevant variables, currentLoc
and currentItem, when you create the ValidateLocation() subroutine (not
shown), and the ValidateItem() subroutine (not shown).

At the conclusion of your application, use the PullBarcode method to restore
the default barcode configuration, and the DeleteBarcodeFile method for
cleanup:

wlbar.PullBarcode "Defltbar"
wlbar.DeleteBarcodeFile "Code39"

36 Wavelink Studio COM
wlbar.DeleteBarcodeFile "CodeBoth"

Adding Tones to Your Applications

You can greatly speed up scanning tasks for end users by incorporating aural
tones in your applications. The advantages of using tones increases in
proportion to the volume of transactional events you must support.

In a receiving application, for example, the end user might be required to
scan a palette of 50 boxes. If the design of the application forces the user to
look at a screen after every scan, scanning will be slow, and the job will be
relatively difficult, increasing the likelihood of user error.

However, by using tones in combination with well-designed applications, the
user can scan through each item in rapid succession, without ever checking
the screen to verify the output. With tones, you can accomplish this by
informing users aurally that they scanned the correct item. When users scan
the wrong item or barcode, you can alert them with a different tone. In this
scenario, you can handle all error checking behind the scenes using some of
the techniques mentioned previously.

A tone configuration is a file that defines the frequency and duration of one or
more tones. Tone configuration files are stored in the mobile device memory
with a .TON extension.

In the following example, you create a tone configuration and store it on the
mobile device. When creating a tone configuration, use the AddTone method
to pass the frequency for each tone, in hertz, as the first argument, and the
duration of the tone, in milliseconds, as the second argument.

wlTone As New RFTone
.
.
.
wlTone.ClearTones
wlTone.AddTone 880, 100
wlTone.AddTone 440, 200

Chapter 4: I/O Techniques 37
wlTone.StoreTones "ErrBeep"

Before you can play any tone configuration, you must store it on the mobile
device. The StoreTones method call from the preceding code, shown here:

wlTone.StoreTones "ErrBeep"

stores the current tone object as a tone configuration named ʺErrorBeep.ʺ You
will use this tone configuration to inform the user that an error has occured
during a scan operation.

NOTE The default tone plays automatically following successful scans. For
maximum efficiency, avoid attaching an extra tone to the default tone.

Using the tone you’ve created within the cycle count application, the code for
processing input now invokes the PlayTone method, and looks like this:

Public wlTone As New RFTone
Dim inQty As Integer
.
.
.
Sub ProcessInput()
 If inType = WLCOMMANDTYPE Then
 If data = 9 Then
 AppFinish = True
 StoreItemQty
 End If
 Exit Sub
 ElseIf inType = WLSCANTYPE Then
 If barType = Code_39
 If ValidateLocation() Then
 wlio.RFPrint 6, 2, currentLoc, WLNORMAL + WLCLREOLN
 wlio.RFPrint 6, 3, "", WLNORMAL + WLCLREOLN + _
 WLFLUSHOUTPUT
 StoreItemQty ’ Store item/quantity info
 ’ from previous location in
 ’ your database.
 currentItem = ""
 Else
 wlTone.PlayTone "ErrBeep"
 End If
 Exit Sub
 Else

38 Wavelink Studio COM
 If ValidateItem() Then
 wlio.RFPrint 6, 3, currentItem, WLNORMAL + _
 WLCLREOLN + WLFLUSHOUTPUT
 inQty = 1
 UpdateQty inQty ’ Update item quantity in your
 ’ table by 1.
 Else
 wlTone.PlayTone "ErrBeep"
 End If
 End If
 Else
 inQty = CInt(inData) ’ Store keyed input as a string
 UpdateQty inQty-1 ’ Update item quantity in your
 ’ table by keyed in value -1.
 End If
End Sub

To clean up at the conclusion of your application, add the following line of
code:

wlTone.DeleteToneFile "ErrBeep"

Navigating the Application

Wavelink incorporates the use of function keys and menus as a means to
provide users with some control over application navigation, within the
constraints defined by the application developer.

Using Function Keys

Function keys on mobile devices include Ctrl+X, arrow keys, and Function 1
through Function 9. As mentioned previously, whenever the application
returns input from the device, it also returns an input type. For function keys,
the input type is WLCOMMANDTYPE. You can check for the input type
using the LastInputType method following an RFInput call.

In most cases, you want to inform the user that pressing a certain key will
invoke a Help screen, cause your application to exit, or do some other task.
You can use an RFPrint call for this purpose.

wlio As New RFIO
Dim inDefault As String
Dim inData As String
.

Chapter 4: I/O Techniques 39
.

.
wlio.RFPrint 0, 0, " Wavelink ", WLCLEAR
 + WLREVERSE
wlio.RFPrint 0, 1, " Price Check Demo ", WLNORMAL
wlio.RFPrint 0, 3, "Item: ", WLNORMAL
wlio.RFPrint 0, 5, "Desc: ", WLNORMAL
wlio.RFPrint 0, 8, "Cost: ", WLNORMAL
wlio.RFPrint 0, 10, "Qty : ", WLNORMAL
wlio.RFPrint 0, 12, "On Order: ", WLNORMAL
wlio.RFPrint 0, 16, " F-1 Help ", WLREVERSE

The last RFPrint call tells the user how to open the Help screen.

Store the input in inData using a call to RFInput.

inDefault = ""
inData = wlio.RFInput(inDefault, 12, 6, 3, ""
' Add error handling code.

Process the input using the LastInputType method. If the input type is
WLCOMMANDTYPE, either exit or display the relevant help screen,
depending on what the user pressed.

Dim inType As Integer
.
.
.
inType = wlio.LastInputType()
 Select Case inType
 Case WLCOMMANDTYPE ' command key
 Select Case inData
 Case Chr$(24) ' Control X - exit
 Finish
 Case "1" ' F1 key - help
 ' Display the relevant Help screen
 End Select
 Case WLKEYTYPE ' keyboard input
 ' process keyed information
 Case Else

40 Wavelink Studio COM
 End Select

NOTE Wavelink allows you to create your own custom hotkeys using the
AddHotkey method of the RFIO object. See the Wavelink Studio COM
Development Library documentation for more information.

Using Menus

Wavelink incorporates special menu functionality through the RFMenu
object. Although it is possible to create menus using a series of RFPrint calls
and then checking the input, you can streamline the process of creating,
displaying, and returning input from menus by using the RFMenu object. The
advantages of using this methodology include:

• Reduced RF traffic. You can store the menu on the device, reducing
potential RF traffic generated by repeated calls to RFPrint.

• Simplified Coding. The code required to process a menu selection is
minimal.

• Reduced Errors. Wavelink menus limit user input to Ctrl+X, Clear, and the
options provided in the menu. No other input is accepted.

A menu configuration is a file containing a single menu that consists of one or
more title lines and one or more options that a user may select.

Before you create the menu configuration, reset the menu object; this will
clear the RFMenu object of any titles or options currently set. This allows you
to re-use the menu object as needed.

wlmenu As New RFMenu
.
.
.
wlmenu.ResetMenu

The following example creates a menu configuration named ʺMainMenuʺ
and stores it on the mobile device. To add descriptive titles on the menu
screen, use the AddTitleLine method. Then use the AddOption method to
add five menu options to the menu configuration.

wlmenu.AddTitleLine "Wavelink Menu"
wlmenu.AddTitleLine " "

Chapter 4: I/O Techniques 41
wlmenu.AddOption "Student Info"
wlmenu.AddOption "Scan Test"
wlmenu.AddOption "Cycle Count"
wlmenu.AddOption "Device Info"
wlmenu.AddOption "Exit"
wlmenu.StoreMenu "MainMenu"

Before you can use the menu configuration, you must store it on the mobile
device. The StoreMenu method call from the preceding code, shown here:

wlMenu.StoreMenu "MainMenu"

stores the current menu object as a menu configuration named ʺMainMenu.ʺ
This file aquires a .MNU extension.

After storing the menu configuration, you can use it later by calling DoMenu.

Public wlio As New RFIO
Dim menuRslt As Integer
.
.
.
wlio.RFPrint 0, 0, "", WLCLEAR + WLFLUSHOUTPUT
menuRslt = wlmenu.DoMenu("MainMenu")

DoMenu displays the named menu configuration on the screen of the mobile
device and will return the numeric value of the option selected by the user.
MainMenu contains five option lines; if the user chooses the second menu
option (ʺScan Testʺ), DoMenu returns a 2 to the application, storing the value
in menuRslt.

If the specified menu configuration cannot be found, or if any other error
occurs, DoMenu automatically returns a -2. If the user presses Ctrl+X or Clear,
DoMenu automatically returns a -1. The following code checks for the
numeric value of the selected option, and processes the option accordingly.

Select Case menuRslt
 Case -2 ' an error has occurred
 ' Display an error message
 .
 .
 .
 Case -1 ' Clr or Ctrl X user exit
 ExitApp
 Case Else ' valid menu selection
 Select Case menuRslt

42 Wavelink Studio COM
 Case 1 ' Student Information
 StudentScreen
 Case 2 ' Scan Test
 ScanTest
 Case 3 ' Cycle Count
 CycleCount
 Case 4 ' Device Information
 Version
 Case 5 ' Exit
 ExitApp
 Case Else ' should not get here
 ' Display an error message
 End Select
End Select

At the conclusion of your application, include the following code for cleanup
purposes:

wlmenu.DeleteMenu "MainMenu"

Using Message Boxes

In writing a Wavelink application, you can choose to display text messages
using either RFPrint calls or the RFError object.

The best choice is based on radio traffic considerations. RFPrint initially
generates more radio traffic. However, by using PushScreen/PullScreen
technology, you greatly reduce the radio traffic whenever you need to re-
display a screen. You cannot use the PushScreen/PullScreen methods with the
RFError object. For this reason, RFPrint is the better choice except in cases
where it’s unlikely the application will re-display a message.

The RFError object allows you to quickly create message boxes and display
them to the user. The following example creates a message and displays it on
row 0 and 1 of the mobile device. The SetErrorLine method creates the
message text and sets the row number for the text. The Display method
displays the message for a specified number of seconds. To display the
message until the user presses any key, pass a value of 0.

Public wlmsg As New RFError
.
.
.

Chapter 4: I/O Techniques 43
wlmsg.ClearError
wlmsg.SetErrorLine " Invalid ", 0
wlmsg.SetErrorLine " Quantity ", 1
wlmsg.Display 0

The user can automatically close the message box by pressing the CLR key.
Because RFError objects might expire before the user hits a key, it is
recommended that you use the input mode, WLCLR_INPUT_BUFFER, with
the RFInput call that follows the message box.

44 Wavelink Studio COM

Chapter 5: Widgets 45
Chapter 5: Widgets
Wavelink supports the creation and manipulation of widgets on mobile
devices that run Palm OS or Windows CE. The Wavelink Development
Library includes support for widget buttons, bitmaps, checkboxes, fields,
hotspots, labels, repeater buttons, and selector triggers. The library also
supports menu-based widgets such as menubars, popup triggers, and push
buttons, as well as pre-defined dialog boxes for signature capture and
signon.

Using Widgets

The primary Wavelink objects you will use to create and manipulate widgets
on the mobile device are:

• WaveLinkFactory. Use this object to build different types of widget
objects.

• WaveLinkWidget. Use this object to modify, manipulate, and identify a
widget object.

• WaveLinkWidgetCollection. Use this object to store, display, and
manipulate a group of widget objects.

The examples in this section describe the first screen in a signature capture
operation. The initial screen prompts the user for a name, a file name for the
captured signature, and then requires the user to press the OK button before
continuing the operation.

When you initialize your widget-based objects, you can also create a variable
of type WaveLinkWidget for widget objects with which the user will interact.
In this case, you create variables for the ʺfieldʺ widgets so you can process
these widgets later based on their unique identifiers.

Public wlwidcoll As New WaveLinkWidgetCollection
Public wlio As New RFIO
Public wlfactory As New WaveLinkFactory
Dim mynameFld As WaveLinkWidget
Dim myfilenameFld As WaveLinkWidget

Before creating the widgets for this screen, clear widgets from the device and
the collection. This step is mandatory when re-using the collection.

46 Wavelink Studio COM
.

.

.
wlwidcoll.DeleteAllWidgets
wlwidcoll.DeleteWidgets

Next, create the first widget. In this example, use the CreateButton method of
the WaveLinkFactory object to create a button widget. The arguments you
pass in the CreateButton method define the following elements of the widget:
the starting left coordinate, the starting top coordinate, the width, the height,
the button label, and the name of the collection that will contain the widget.

wlfactory.CreateButton 3, 10, 0, 0, " Ok ", wlwidcoll

The first two arguments in the CreateButton method (and in most other
widget creation methods) represent the horizontal and vertical coordinates of
the widget on the mobile device screen.

NOTE You can use the DefaultCoordinateType property of the
WaveLinkFactory object to change how the application interprets values
passed for the vertical and horizontal coordinates, and for the height and
width.

The third and fourth argument in the CreateButton method determine the
width and the height of the widget. Many widgets allow you to pass values of
zero (0) for the width and height to automatically size, or autosize, the widget.
The specific widget type determines how the application handles autosizing
values. For example, when you autosize a button widget, the application sizes
the widget according to the size of the text that it contains. See the Wavelink
Development Library documentation for information specific to each widget
type.

Create a second button widget. Add this widget to the same collection in
order to manipulate the widgets as a group.

wlfactory.CreateButton 9, 10, 0, 0, " Cancel ", wlwidcoll

Next, create a field widget to obtain the user’s name. In this example, use the
RFPrint method to tell the user what to do.

wlio.RFPrint 3, 2, "Enter your Name:", WLCLEAR
Set mynameFld = myfactory.CreateField(3, 3, 12, 1, "", _

Chapter 5: Widgets 47
 wlwidcoll)

Then create a second field widget to obtain the desired file name for the
signature.

wlio.RFPrint 3, 6, "Save file as:", WLNORMAL
Set myfilenameFld = myfactory.CreateField(3, 7, 12, 1, "", _
 wlwidcoll)

As mentioned previously, you will use the WaveLinkWidgetCollection object
to store and display a group of widgets. You can assign any widget to a
collection, but typically you will put widgets in the same group to cause them
to appear simultaneously on the mobile device screen. To store and display
the widgets in the current collection, use the StoreWidgets method of the
WaveLinkWidgetCollection object.

myCollection.StoreWidgets

The API sends data to the device when the output buffer reaches 100 bytes or
when the application makes an input call. See Handling Events on page 48 for
more information about making the input call.

Figure 5-1 shows how this screen appears on a mobile device running Palm
OS.

Figure 5-1. Widget Example Screen

When you are finished with a group of widgets, you can clear them off the
screen of the mobile device with the WaveLinkWidgetCollection object.

48 Wavelink Studio COM
wlwidcoll.Clear

The methodology for creating widgets varies somewhat depending on the
specific widget type, as follows:

• For buttons, bitmaps, checkboxes, fields, hotspots, labels, repeater buttons,
and selector triggers, the preceding example shows the corrrect
methodology. See the Wavelink Development Library documentation for
more information about creating specific widget types.

• For widgets based on dialog boxes, such as the scribblepad and signon
widgets, see Using Widget-based Dialog Boxes on page 49 for additional
information.

• For widgets based on menus, such as menubars, popup triggers, and push
buttons, see Using Menu-based Widgets on page 50 for additional
information.

Handling Events

You can use either the GetEvent or RFInput method to return widget-based
input from the mobile device. GetEvent returns input from the application
after a single input event.

The example in the previous section used a button widget and a field widget.
For a button widget, an input event occurs when the user clicks the button.
For a field widget, an input event occurs when the user exits the field.
Because you want to process input from multiple widgets (i.e., the widget
fields and one of the two buttons), you must create a loop structure
containing the GetEvent call.

When returning input from a button widget, GetEvent returns the button
label text. This allows you to easily process input from a button widget using
its label text, in this case either ʺOkʺ or ʺCancel.ʺ

In the case of field widgets, GetEvent returns the contents of the field.

In addition to returning information specific to a widget (such as the field
contents), RFInput and GetEvent also return a unique widget identifier (ID),
which you can access using the LastExtendedType method. You can compare
the widget ID returned by LastExtendedType to the ID of specific widgets,
and process accordingly if the IDs match up.

Chapter 5: Widgets 49
NOTE The API creates the widget ID automatically when you first create the
widget. You can access the ID of the widget you created using the WidgetID
property.

Public wlio As New RFIO
Dim fileName, userName As String ' User input
variables
Dim result As String ' User input variables
Dim done As Boolean ' Loop variable
.
.
.

' Initialize loop variable
done = False

While done = False
 result = wlio.GetEvent
 ' Add error handling code.
 If mynameFld.WidgetID = wlio.LastExtendedType Then
 userName = result
 ElseIf myfilenameFld.WidgetID = wlio.LastExtendedType Then
 fileName = result
 ElseIf result = "Ok" Than
 done = True
 ElseIf result = "Cancel" Than
 Goto ExitApp
 Else
 Goto ErrorHandler
 EndIf
Wend

Using Widget-based Dialog Boxes

Wavelink supports a pre-defined dialog box for signature capture. This
section continues the example in the preceding section, and shows the portion
of the application that displays the signature capture dialog box. The
WaveLinkScribblePad object defines this dialog box.

50 Wavelink Studio COM
Dim wlscribble As New WaveLinkScribblePad
Dim myWidget As WaveLinkWidget
.
.
.
' Obtain the user name and store it in userName.
' Obtain the new file name in store it in fileName.

In this example, you set the title for the scribble pad dialog box to the name of
the current user using the DisplayText property of the WaveLinkWidget
object.

Set myWidget = wlscribble.Title
myWidget.DisplayText = userName

Next, use the DisplayDialog method of the WaveLinkScribblePad object to
display the dialog box and return the signature or image. Here, you pass the
name of the file as an argument to save the signature as ʺC:\filename.jpg.ʺ

wlscribble.DisplayDialog "C:\" + fileName + ".jpg"

Figure 5-2 shows how this dialog box will appear on the mobile device screen.

Figure 5-2. The Scribble Pad Dialog Box

See the WaveLink Development Library documentation for more information
about using this object.

Using Menu-based Widgets

Menu-based widgets include popup triggers, push buttons, and menubars.
These widgets use the RFMenu object to populate the widget with options,

Chapter 5: Widgets 51
which alters the widget creation process for these widgets. The following
example shows how to create a popup trigger widget.

NOTE For more information about creating menu configurations, see Using
Menus on page 40.

Before you create the popup trigger, you must build the menu configuration
you intend to use.

Dim wlfactory As New WaveLinkFactory
Dim wlwidcoll As New WaveLinkWidgetCollection
Dim wlmenu As New RFMenu
Dim welcomeMenu As WaveLinkWidget
.
.
.
wlmenu.ResetMenu
wlmenu.SetMenuWidth 18
wlmenu.AddOption "Basic Car Wash"
wlmenu.AddOption "Basic Wash/Wax"
wlmenu.AddOption "Carnuba Wax"
wlmenu.AddOption "Interior Clean"
wlmenu.AddOption "Full Detail"
wlmenu.AddOption "Special Detail"
wlmenu.AddOption "Device Version"
wlmenu.AddOption "Exit"
wlmenu.StoreMenu "MainMenu"
.
.
.
Next, use the CreatePopupTrigger method to create the widget, passing in
the name of the associated menu configuration. Store the widget as usual.

Set welcomeMenu = wlfactory.CreatePopupTrigger(3, 5, 0, 0, _
 "MainMenu", 1, wlwidcoll)

wlwidcoll.StoreWidgets

The coding required to create a popup trigger and a push button widget
involve the same basic steps. See the Wavelink Development Library
documentation for more information.

Menubar widgets, unlike popup triggers and push buttons, can contain
multiple menus. To handle this additional functionality, the menubar widget

52 Wavelink Studio COM
uses the WaveLinkMenubarInfo object. The WaveLinkMenubarInfo object
contains the methods necessary to create and manipulate a set of menus. The
following example shows how to create a menubar widget.

Public wlmenuinfo As New WaveLinkMenubarInfo
Public wlmenu As New RFMenu
Public wlwidcoll As New WaveLinkWidgetCollection
Public wlfactory As New WaveLinkFactory
Dim myWidget As WaveLinkWidget
.
.
.
 ' Create the menus that will appear in the main menu bar
 wlmenu.ResetMenu
 wlmenu.AddTitleLine "Widget Demo's"
 wlmenu.AddOption "Buttons"
 wlmenu.AddOption "Pen Capture"
 wlmenu.StoreMenu "MenOne"

 wlmenu.ResetMenu
 wlmenu.AddTitleLine "Exit"
 wlmenu.AddOption "Quit"
 wlmenu.StoreMenu "MenTwo"

Insert the two menus into the WaveLinkMenubarInfo object using the Insert
method. The Insert method adds a menu configuration to the
WaveLinkMenubarInfo object at a specified index. By passing an argument of
-1 as the index value, you automatically tack the named menu to the end of
the list. In this example, MenOne will appear as the first menu in the
menubar.

 wlmenuinfo.Insert -1, "MenOne"
 wlmenuinfo.Insert -1, "MenTwo"
.
.
.
Then use the CreateMenubar method to create the menubar. The menubar
always displays at the top of the mobile device screen, so the only arguments
you need to pass into this method are the name of the WaveLinkMenubarInfo
object you want to associate with the menubar, and the name of the widget
collection.

 ' Create the menubar
 Set myWidget = myFactory.CreateMenubar myMenInfo,
myCollection

Chapter 5: Widgets 53
 wlwidcoll.StoreWidgets

You can process input from menu-based widgets as you would a standard
RFMenu object. See Using Menus on page 40 for more information. Because
menubar widgets contain multiple menus, you must also first determine the
menu from which the user selected the option before you can process the
selected option itself. For example, in the previous code, you inserted the
ʺMenOneʺ menu into the WaveLinkMenubarInfo object at the first index
position (0 index). You can use the LastExtendedType method to return the
index value of the menubar.

Widget Transactions

The WaveLinkWidget object provides numerous functions for manipulating
widgets before and after you display them on the screen of the mobile device.
This section describes a few of these functions:

• Positioning Widgets

• Hiding and Disabling Widgets

• Setting the Focus

Positioning Widgets

The first two arguments you pass in most of the widget creation methods
represent the horizontal and vertical coordinates of the widget on the mobile
device screen. The values you pass for these coordinates must be one of three
coordinate types:

BYCELL Position the widget using cell coordinates (rows and
columns), measured from the left edge (column 0) or
top edge (row 0) of the screen.

BYPIXEL Position the widget using pixel coordinates,
measured from the left or top edge of the screen.

BYPERCENTAGE Position the widget using percentage coordinates,
measured from the top or left edge of the screen.

54 Wavelink Studio COM
You can use the DefaultCoordinateType property of the WaveLinkFactory
object to change how the application interprets these values. The default
coordinate type for all widgets is cell coordinates.

For example, in the following code:

Dim myCollection As New WaveLinkWidgetCollection
Dim myFactory As New WaveLinkFactory
.
.
.
myFactory.DefaultCoordinateType = BYPIXEL
myFactory.CreateBitmap 20, 20, 35, 25, "logo.bmp", myCollection

myCollection.StoreWidgets

you set the default coordinate type to pixel dimensions, and pass values for
the horizontal and vertical coordinates in pixels. In this case, you position the
bitmap 20 pixels from the top left edge of the screen.

Hiding and Disabling Widgets

The StoreWidgets method of the WaveLinkWidgetCollection object stores all
widgets in the current collection. By default, widgets display immediately
when you use the StoreWidgets method. However, you can use the
InitialFlags property of the WaveLinkWidget object to change this. For
example, in the following code,

Public wlfactory As New WaveLinkFactory
Public wlwidcoll As New WaveLinkWidgetCollection
Dim myButton As WaveLinkWidget
.
.
.
Set myButton = wlfactory.CreateButton (3, 10, 0, 0, " Ok ", _
 wlwidcoll)
myButton.InitialFlags = INITHIDDEN

you set the initial state of the button widget to hidden. Hidden widgets do not
display when you call the StoreWidgets method, but instead appear when
you use the Show method of the WaveLinkWidget object or the ShowWidgets
method of the WaveLinkWidgetCollection object.

Chapter 5: Widgets 55
myButton.Show True

You can hide or display any widget using the Show method or any group of
widgets using the ShowWidgets method.

In addition to hiding and showing widgets, you can also disable and enable
widgets. Disabled widgets appear on the screen of the mobile device, but do
not return when you tap them. Typically, disabled widgets appear in gray
color or with a crosshatch pattern in place of the label text. You can disable a
widget before displaying it on the mobile device using, again, the InitialFlags
property.

Public wlfactory As New WaveLinkFactory
Public wlwidcoll As New WaveLinkWidgetCollection
Dim myButton As WaveLinkWidget
.
.
.
Set myButton = wlfactory.CreateButton (3, 10, 0, 0, " Ok ", _
 wlwidcoll)
myButton.InitialFlags = INITDISABLED

To enable the widget, use the Enable method of the WaveLinkWidget object
or the EnableWidgets method of the WaveLinkWidgetCollection object.

myButton.Enable True

Setting the Focus

When working with field widgets, you can change the input focus from one
widget to another. The Focus method of the WaveLinkWidget object provides
this functionality. The following example shows how to use the Focus method
to process input from the initial screen of the signature capture operation
from the earlier example (See Handling Events on page 48). The revised code
for processing input now looks like this:

Public wlio As New RFIO
Dim fileName, userName As String ' User input
variables
Dim result As String ' User input variables
Dim done As Boolean ' Loop variable
.
.
.

56 Wavelink Studio COM
' Initialize loop variable
done = False

While done = False
 result = wlio.GetEvent
 ' Add error handling code.
 Select Case result
 Case "Ok"
 done = True
 Case "Cancel"
 GoTo ExitApp
 Case Else
 If mynameFld.WidgetID = wlio.LastExtendedType Then
 userName = result
 myfilenameFld.Focus
 End If
 If myfilenameFld.WidgetID = wlio.LastExtendedType
Then
 fileName = result
 End If
 End Select
 Wend

In this revised code, when the user exits the field that prompts the user for a
name, the input focus switches automatically to the other field on the screen.

Chapter 6: Writing Applications for Multiple UIs 57
Chapter 6: Writing Applications for
Multiple UIs

With the rise of ubiquitous computing and the multiplication of wireless
LANs and WANSs, the coupling of an application’s logic and its presentation
become an increasing hindrance. The fact that applications often require more
than one interface increases the need to separate these two application
components. This section of this document presents different options for
handling these application types:

• In the first section, general techniques based on Wavelink objects
demonstrate how to obtain critical device information at run-time,
allowing you to base the presentation on the current device. These
techniques can be used in traditional or object-oriented application
designs.

• In the second section, object-oriented techniques demonstrate how to
write applications that de-couple the presentation layer from the logic
layer. These techniques also incorporate Wavelink objects to obtain device
information and build the actual device-specific UI.

General Techniques

To write applications for use on mobile devices with varied screen sizes and
potentially different operating systems, Wavelink includes methods to return
critical information from the currently connected mobile device. The
RFTerminal object provides this functionality. Several RFTerminal functions
provide the following information:

• Information about the display dimensions of the mobile device.

• Information about the mobile device type.

Returning the Screen Dimensions

The following RFTerminal functions provide information about the display
size of the current mobile device:

• TerminalHeight. This method returns the height (in characters) of the
device display.

58 Wavelink Studio COM
• TerminalWidth. This method returns the width (in characters) of the
device display.

In the following code, the TerminalHeight method places output text in the
middle of the screen and on the bottom row of the mobile device. This
methodology is especially useful when creating applications for devices with
different or unknown screen dimensions. In this example, the output text,
Name:, will appear in the vertical center of the device screen, irrespective of
the screen dimensions. The output text, Ctrl+X = Log Off, will appear on
the final row of the device screen.

NOTE Because the the first row of the mobile device is 0 rather than 1, you
must subtract 1 from the returned height to obtain the last row.

wlterm As New RFTerminal
wlio As New RFIO
lastLine As Integer
signonLine As Integer
.
.
.
lastLine = termIface.TerminalHeight () - 1
signonLine = lastLine / 2
.
.
.
wlio.RFPrint (0, 0, " Sign On Screen ", _
 WLCLEAR | WLREVERSE);
wlio.RFPrint (0, signonLine, " Name:", WLNORMAL);
wlio.RFPrint (1, lastLine, " Ctrl+X = Log Off ", WLREVERSE);

Returning the Device Type

The RawTerminalType method returns the device type. Using this method,
you can incorporate code into your applications that allows you to handle
multiple device types, for example, a Palm OS and a DOS device.

To simplify the coding later, you can assign a set of device types to a variable.
In this case, you distinguish only between several GUI-based devices and all
other devices. By making this distinction, you can build screens based on
whether or not the device supports widgets.

Chapter 6: Writing Applications for Multiple UIs 59
wlterm As New RFTerminal
nRFTerminalType As Integer
guiDevice As Boolean
.
.
.
nRFTerminalType = wlterm.RawTerminalType
Select Case nRFTerminalType
 Case PDT1740 ’ a Palm OS device
 guiDevice = true
 Case PDT2740 ’ a Windows CE device
 guiDevice = true
 Case Else ’ DOS devices
 guiDevice = false
End Select

In this example, you create a portion of the screen based on whether or not
the device supports widgets. In this case, if the device supports widgets,
create the widgets in the WidgetAppMenu() subroutine (not shown). If the
device does not support widgets, you build a menu using the RFMenu object.

wlmenu As New RFMenu
’ Add a menu configuration (not shown)
.
.
.
wlio.RFPrint 0, 0, "Wavelink Corporation ", WLCLEAR + WLREVERSE
wlio.RFPrint 0, 2, " Process Options ", WLNORMAL +
WLFLUSHOUTPUT
If guiDevice = true Then
 WidgetAppMenu
Else
 nProcessRslt = wlmenu.DoMenu("MainMenu")
End If

Using this technique, you can create and process screens for any device type
as needed. See Using Widgets on page 45 for more information about
designing widget-based screens.

Object-Oriented Techniques

This section shows how to write applications for multiple UIs using Wavelink
objects within an object-oriented framework. The goal of this approach is to
create applications that efficiently handle multiple UIs and are easy to debug,

60 Wavelink Studio COM
modify, extend, and re-use. To accomplish these goals, the application design
is based on the Model-View-Controller paradigm and incorporates a Finite
State Machine (FSM).

NOTE Although the sample code in this section is in C++, the programming
techniques also apply to Visual Basic.

The sections that follow provide detailed information about how the the
sample application, Wavelink Program Manager, works. These sections are
arranged by topic, as follows:

• Program Overview

• Initializing the Application & Starting the Finite State Machine

• Finite State Machine Classes

• Presentation View Classes

• State Classes

Program Overview

This Program Manager application allows a user to run a selected application
from a list of applications. The program initially prompts the user for a name
and password. When the user enters this information, the program validates
the input, and if the input is valid, it presents an application menu. When the
user selects an application menu option, the Program Manager launches the
corresponding application.

This application is based on the following design patterns:

• Model-View-Controller Paradigm

• Finite State Machines

Model-View-Controller Paradigm

The Program Manager application is based on the Model-View-Controller
paradigm. In this paradigm, the following application elements are separated
into different specialized objects: the output (or view), the input and program
flow (the controller), and the data and data processing (the model).

Chapter 6: Writing Applications for Multiple UIs 61
The distinct roles of the view and controller elements, represented by two
distinct classes, are especially critical in the Program Manager application.
Because the behavior of these classes (i.e., output behavior and input/
program flow behavior) is easy to stylize in most applications, two generic
base classes and a set of associated derived classes are used. Figure 6-1 shows
the class structure for the view and controller elements.

Figure 6-1. The View and Controller Classes

The view and controller classes and their derived classes use polymorphism.
In polymorphism, the base class provides generic functions (a generic
interface) that must be common to all derived classes. In this way, any of the
derived classes can be invoked at run-time, because each such class contains
all the essential methods.

For example, in the Program Manager, several derived view classes represent
pen-based devices and several others represent all other devices. If the
application initially detects a pen-based device at run-time, it loads all the
pen-based views. Consequently, when the application invokes a generic
ʺexecute viewʺ method, the execute method of the corresponding pen-based
view will be invoked.

Using the Model-View-Controller paradigm, the controller classes contain
application logic while the view classes contain the UI. This de-coupling of
the logic layer from the presentation layer reduces the debug and coding
cycles and promotes re-use. For example, you can easily add or subtract
views for different device types without affecting the application logic.
Furthermore, you can easily extend the application by adding new controller
sub-classes along with corresponding views.

62 Wavelink Studio COM
Finite State Machines

To implement the application’s Model-View-Controller paradigm, the
Program Manager incorporates a Finite State Machine (FSM). A Finite State
Machine consists of a machine object containing a list of states (state objects)
that perform the steps of the application. The states contain most of the
controller functionality in the Model-View-Controller paradigm.

A machine object starts by executing the first state. The state processes input
and returns the identifier of the next state to be executed. The application
exits when the exit state identifier is processed.

In the Program Manager, the machine object also executes a presentation
view (based on the state) before executing the state itself. Each presentation
view represents a specific UI for specific device types (in this case, pen-based
devices or all other devices). The diagram shown in Figure 6-2 shows this
process in detail.

Figure 6-2. Finite State Machine

For the Program Manager, a separate state is required to perform each of the
following functions: 1) process the user name and password, 2) process the
user’s menu selection and launch the appropriate application, and 3) perform
error handling and exit the application. Three presentation views (one for

Chapter 6: Writing Applications for Multiple UIs 63
each state) are also required for pen-based devices, and a second set of
presentation views are needed for other device types.

The advantages of the Finite State Machine are summarized here:

• The generic Finite State Machine functionality can be re-used in multiple
applications. The Finite State Machine does not need to know anything
about the user interface or the specific states of the application.

• Modification to the application is simplified through adding or deleting
state classes.

• The Finite State Machine functionality can exist at multiple levels (for
example, a menu machine can execute states that contain their own Finite
State Machines).

Program Source Files

In addition to header files and a C++ file containing the mandatory ʺmainʺ
function, the Wavelink Program Manager includes several source files for the
different classes associated with the application. The source files for this
application are as follows.

WaveLinkPM.cpp Initializes COM and includes the C++
ʺmainʺ function. In this sample program,
the code following the ʺmainʺ function
runs the Finite State Machine for the
application.

CFSMBase.cpp This class implements the Finite State
Machine. This machine object is generic to
allow for reusability.

CWaveLinkPMFSM.cpp This class, derived from CFSMBase,
implements application-specific
initialization methods to populate the
objects that contain the list of possible
states (state objects) and the list of possible
presentation views (view objects).

CPresentationList.cpp
CStateList.cpp

These container classes hold the
presentation views and the states,
respectively.

64 Wavelink Studio COM
NOTE This list does not include the header files associated with each source
file. See C++ Source Files on page 75 for more information.

Initializing the Application & Starting the Finite State
Machine

The WaveLinkPM.cpp source file initializes COM and contains the main
function (required in C++) where processing begins. In this application, the
code associated with the main function, shown here, runs the Finite State
Machine.

NOTE See WaveLinkPM.cpp on page 75 for the complete code in
WaveLinkPM.cpp.

// import libraries and include header files
.
.
.
int TerminalType();

CPresentationBase.cpp This class is the base class for the
presentation view classes.

CSignonDefaultView.cpp
CSignonPenView.cpp
CMenuDefaultView.cpp
CMenuPenView.cpp
CErrorDefaultView.cpp

These classes, derived from
CPresentationBase, instantiate specific
presentation views based on specific
device types, in this case, pen-based
devices vs. all other devices.

CStateBase.cpp This class is the base class for the state
classes.

CSignonSt8.cpp
CMenuSt8.cpp
CErrorSt8.cpp

These classes, derived from CStateBase,
instantiate the states (state objects) that
process user input, and either advance the
program to the next state in the Finite
State Machine, or loop back without
changing the state. For the CErrorSt8 class,
this class sets a value to terminate the
Finite State Machine.

Chapter 6: Writing Applications for Multiple UIs 65
int main(int argc, char* argv[])
{

if (SUCCEEDED (CoInitialize (NULL))) {
try {

CWaveLinkPMFSM currentMachine;
int termType;

termType = TerminalType();

currentMachine.InitializeStateList ();
currentMachine.InitializeViewList (termType);
currentMachine.ExecuteMachine (SIGNON);

}// try
catch (const _com_error& ce) {
}// catch (const _com_error& ce)

CoUninitialize ();
}// if (SUCCEEDED (CoInitialize (NULL))

return 0;
}

In the preceding code, the line:

CWaveLinkPMFSM currentMachine;

instantiates the Finite State Machine object (or machine object),
currentMachine, as an object of type CWaveLinkPMFSM.
CWaveLinkPMFSM is derived from the Finite State Machine base class,
CFSMBase, and contains the initialization methods specific to the Program
Manager.

You then use the machine object to invoke the InitializeStateList method.
InitializeStateList loads three states (a signon, menu, and error state object)
into a container object.

currentMachine.InitializeStateList ();

NOTE For detailed information about the InitializeStateList method, see
Populating the State List and View List on page 67.

66 Wavelink Studio COM
You must also load the required views into a second container object.
However, before you load the views, you must obtain the current device type.
The following code excerpt from WaveLinkPM.cpp shows how you can
obtain the device type.

First, invoke the TerminalType method of WaveLinkPM.cpp and store the
result in a variable.

.

.

.
int TerminalType();
.
.
.
termType = TerminalType();

In the TerminalType() method, the ReadTerminalInfo method of the
RFTerminal object makes a call to the mobile device to obtain current device
information. After calling ReadTerminalInfo, invoke the RawTerminalType
method to return the current device type (for example, PALM_PILOT or
CE2740).

// Note: The TerminalType() method is inserted at the end of the
// WaveLinkPM.cpp source file.
.
.
.
//Returns the raw terminal type of the device
int TerminalType()
{
IRFTerminalPtr termIface(__uuidof(RFTERMINAL));

termIface->ReadTerminalInfo ();

return termIface->RawTerminalType();
}

After this code executes, the variable termType contains the current device
type. Based on this information, the machine object calls the
InitializeViewList method to load three presentation views into a container
object. These views correspond to the three states (i.e., a signon view, a menu
view, and an error view).

Chapter 6: Writing Applications for Multiple UIs 67
currentMachine.InitializeViewList (termType);

NOTE For detailed information about the InitializeViewList method, see
Populating the State List and View List on page 67.

After initializing the states and presentation views, the following line of code
executes the main routine of the Finite State Machine. You pass the intitial
state identifier, SIGNON, as an argument.

currentMachine.ExecuteMachine (SIGNON);

The implementation of the ExecuteMachine method is contained in the base
class for the Finite State Machine. See Finite State Machine Classes for more
information.

Finite State Machine Classes

The Program Manager includes two Finite State Machine classes, CFSMBase
and CWaveLinkPMFSM.

CFSMBase contains the main execution routine of the Finite State Machine.
As a generic type of Finite State Machine, CFSMBase adds re-usability to the
application. Re-use can be implemented in other applications or at different
levels within a single application (for example, a menu machine can execute
states that contain their own Finite State Machines).

Finite State Machine functionality specific to the WaveLink Program Manager
application is contained in the derived class, CWaveLinkPMFSM. This class
contains the application-specific initialization methods; it populates the state
list and presentation view list.

NOTE See Implementing the Finite State Machine on page 70 for more
information about the base class for the Finite State Machine, CFSMBase.

Populating the State List and View List

To clarify the program execution during the initialization phase, this section
shows what occurs when the Finite State Machine creates the states and
presentation views that it requires at run-time.

68 Wavelink Studio COM
For the Program Manager, a separate state is needed to perform each of the
following functions: 1) process the user name and password, 2) process the
user’s menu selection and launch the appropriate application, and 3) perform
error handling and exit the application. The state classes, CSignonSt8,
CMenuSt8, and CErrorSt8 handle these tasks, respectively. At the conclusion
of each state’s execution, it returns the state identifier corresponding to the
next state in the Finite State Machine (for example, CSignonSt8 returns the
state identifier, MENU).

The following code fragment shows how CWaveLinkPMFSM.cpp stores the
states for the application. A container class, CStateList, is required to hold the
states for the application. As shown here, the push_back method stores the
different states in stateList (a container object of type CStateList).

NOTE CStateList is based on the vector data type. In C++, a vector functions
much like an array. For the source code for the CStateList class, see
CStateList.cpp on page 79. For the source code to the CWaveLinkPMFSM class,
see CWaveLinkPMFSM.cpp on page 76.

// include header files
.
.
.
void CWaveLinkPMFSM::InitializeStateList ()
{
stateList.push_back (new CSignonSt8(this));
stateList.push_back (new CErrorSt8());
stateList.push_back (new CMenuSt8(this));
}

In addition to the states, the application also requires presentation views to
build the screens on the mobile device depending on the current state. In the
Program Manager, the InitializeViewList method stores a set of presentation
views in viewList (a container object of type CPresentationList) based on
whether or not the device is pen-based.

The InitializeViewList method takes an argument containing the current
device type.

Chapter 6: Writing Applications for Multiple UIs 69
void CWaveLinkPMFSM::InitializeViewList (int uiType)

Using a switch statement, the InitializeViewList method compares the device
type to a set of constants representing pen-based devices. If the device type
matches one of the pen-based constants, the container object stores the three
presentation views that are specific to pen-based devices. If no match is
found, the container object stores the three generic presentation views
instead.

void CWaveLinkPMFSM::InitializeViewList (int uiType)
{
switch(uiType)
{
case PALM_PILOT:
case CE2740:
case CE7200:
case CE7540:
case INTERMEC:
case WINDOWS:
case PPC:
case HPC:
case HPCPRO:
 viewList.push_back (new CSignonPenView());
 viewList.push_back (new CErrorDefaultView());
 viewList.push_back (new CMenuPenView());
break;
default:
 viewList.push_back (new CSignonDefaultView());
 viewList.push_back (new CErrorDefaultView());
 viewList.push_back (new CMenuDefaultView());
break;
}
}

The generic presentation views will use the RFIO object to build text-based
screens on the mobile device, whereas the pen-based screens use Wavelink
widgets.

For example, if the user is using a Palm Pilot, the device type, PALM_PILOT,
will be passed to the InitializeViewList method at run-time. As a result, the
container object stores the pen-based presentation views corresponding to
the different states in the Finite State Machine: CSignonPenView,
CMenuPenView, and CErrorDefaultView.

70 Wavelink Studio COM
NOTE Use the RFTerminal object to obtain current device information such as
the device type. See Returning the Device Type on page 58 for more
information.

Implementing the Finite State Machine

CFSMBase is the base class for the Finite State Machine. The ExecuteMachine
method in this class is the main program loop for the application.
ExecuteMachine finds and executes the views and states.

NOTE The Program Manager’s main function invokes the ExecuteMachine
method. See Initializing the Application & Starting the Finite State Machine on
page 64 for more information.

In the following code fragment,

void CFSMBase::ExecuteMachine(int initialState)
{
int nextState = initialState;
CStateBase* currentState;
CPresentationBase* currentView;
.
.
.
// Add the main application loop here (not yet shown).
.
.
.
}

the ExecuteMachine method initializes the nextState variable with the
initialState parameter, SIGNON, and creates a generic state object,
currentState:

CStateBase* currentState;

and a generic presentation view object, currentView:

Chapter 6: Writing Applications for Multiple UIs 71
CPresentationBase* currentView;

NOTE The Program Manager’s main function passes the initial state,
SIGNON, when it invokes the ExecuteMachine method.

The ExecuteMachine method then executes the views and states, which is the
main application loop for the program. The application remains in the loop
until the next state value equals the exit state value (-1), at which point the
application exits. The main application loop obtains a reference to a
presentation view based on the current state ID. To obtain the correct
reference, it invokes the ParseViewList method. Next, it obtains a reference to
a state based on the current state ID. To obtain the correct reference, it invokes
the ParseStateList method.

 .
 .
 .
 while(nextState != -1)
 {
 currentView = ParseViewList (nextState);
 currentState = ParseStateList (nextState);

 // include error checking here (not shown)

 currentView->ExecuteView (currentState);
 nextState = currentState->ExecuteState ();
 }//end while(nextState != -1)

The ParseViewList and the ParseStateList methods function in a very similar
way. When the machine object calls the ParseViewList method, passing it the
current state ID, the code iterates through the list of presentation views and
compares their associated state IDs to the current state ID. When it finds a
match, it returns a reference to the matching presentation view. Here is the
code for the ParseViewList method.

CPresentationBase* CFSMBase::ParseViewList(int stateID)
{
CPresentationBase* tempView;

for(int lcv = 0; lcv < viewList.size (); lcv++)
{
tempView = viewList[lcv];

72 Wavelink Studio COM
if(tempView->StateID() == stateID)
return tempView;
}

return NULL;

}

For example, when the initial state ID, SIGNON, is passed to the
ParseViewList method, the method iterates through the list of presentation
views and returns either a reference to the CSignonPenView object (for a pen-
based device) or the CSignonDefaultView object (for other devices). Only
these two presentation views will return a value of SIGNON when their
respective StateID methods are invoked.

NOTE The ExecuteMachine method and the parsing methods shown here
mimic the observer-observable design pattern. For Java applications or
complex C++ applications, it is recommended that you incorporate a true
observer-observable relationship.

In similar fashion, the ParseStateList method obtains a reference to the
current state. Initially, this returns a reference to the CSignonSt8 object that
will process the user name and password.

The next portion of the main application loop that executes is:

currentView->ExecuteView (currentState);

In the preceding line of code, currentView now contains a reference to the
correct presentation view object, and invokes the ExecuteView method of that
object. The presentation view objects are derived from CPresentationBase and
are based on polymorphism. All the classes derived from CPresentationBase
implement the ExecuteView method, but they implement the method specific
to a device type and a state (for example, the signon state). Initially, the
ExecuteView method for each presentation view displays the signon screen
for either a pen-based device (CSignonPenView) or all other devices
(CSignonDefaultView).

During the first iteration of the main application loop, the presentation view
prompts the user for a name and password and stores this information, but
does not validate the input. The validation functionality belongs to the logic

Chapter 6: Writing Applications for Multiple UIs 73
layer of the application and therefore resides in one of the states (in this case,
CSignonSt8). The following line of code invokes the ExecuteState method of
the current state object.

nextState = currentState->ExecuteState ();

Like the presentation views, the states also incorporate polymorphism.
CStateBase provides the StateID and ExecuteState methods as the generic
interface for the states. The ExecuteState method processes input for each
state (for example, it validates the user name and password in CSignonSt8)
and returns the state ID of the next state in the Finite State Machine. For
example, the ExecuteState method in CSignonSt8 returns the state identifier,
MENU, and stores this value in the nextState variable.

Presentation View Classes

The following code shows the header file for the CPresentationBase, the base
class for the presentation view classes. This code shows the required
methods, StateID and ExecuteView, that must be included with all derived
classes.

NOTE See CPresentationBase.cpp on page 80 for the code included in
CPresentationBase.cpp.

///
//
//CPresentationBase

#ifndef __CPRESENTATIONBASE_H__
#define __CPRESENTATIONBASE_H__

#include "CStateBase.h"

class CPresentationBase {
public:
//Default CTOR
CPresentationBase();

//Not implemented but required for derived classes
virtual int StateID() = 0;
virtual void ExecuteView(CStateBase* currentState) = 0;

//Member value used to determine whether view should be pushed

74 Wavelink Studio COM
or restored
bool stored;
};

#endif

The StateID method returns the state identifier for each derived class. The
machine object uses this method when parsing the view list to obtain the
correct view. The following code shows this code fragment from
CSignonPenView.

//Return SignonSt8 id
CSignonDefaultView::StateID ()
{
return SIGNON;
}

The ExecuteView method presents the UI associated with each state and
returns the required input.

NOTE The ExecuteView methods use Wavelink objects to build the screen on
the device. See Chapter 4: I/O Techniques on page 13 and Using Widgets on
page 45 for more information about building screens. For information about
positioning text on the screen based on the screen dimensions of the current
device, see Returning the Screen Dimensions on page 57.

The sample code for the ExecuteView methods in the derived presentation
view classes do not include new programming concepts or models. See C++
Source Files on page 75 for information about the source code for the derived
presentation view classes.

State Classes

The state classes derive from CStateBase and include CSignonSt8, CMenuSt8,
and CErrorSt8. Like the presentation view classes, these classes include the
StateID method that returns the state identifier. However, the primary
method in each state class is ExecuteState; this method processes application
data based on the current state. In addition, it returns the identifier of the next
state in the Finite State Machine.

For example, the ExecuteState method in CSignonSt8 validates the user name
and password, then returns the identifier for the next state, MENU.

Chapter 6: Writing Applications for Multiple UIs 75
As the final state in the Finite State Machine, the CErrorSt8 returns a value
that will terminate the program.

The sample code for the classes derived from CStateBase does not include
new programming concepts or models. See C++ Source Files for information
about the source code for the derived state classes.

C++ Source Files

This section includes sample code for the following Program Manager source
files:

WaveLinkPM.cpp
CStateList.cpp
CPresentationList.cpp
CWaveLinkPMFSM.cpp
CFSMBase.cpp
CPresentationBase.cpp
CStateBase.cpp

NOTE The sample code included here is updated for the Wavelink Program
Manager, shipped with Wavelink Studio COM, which is also compatible with
Wavelink Studio 3.6.

WaveLinkPM.cpp

///
// WaveLinkPM.cpp - Initializes COM and runs the WaveLinkPM
//finite state machine.
//

#import "WaveLink.tlb" no_namespace named_guids
#import "WaveLink.tlb" named_guids
#import "PMAFunctions.tlb" no_namespace named_guids
#include "CWaveLinkPMFSM.h"

int TerminalType();

int main(int argc, char* argv[])
{

if (SUCCEEDED (CoInitialize (NULL))) {
try {

76 Wavelink Studio COM
CWaveLinkPMFSM currentMachine;
int termType;

termType = TerminalType();

currentMachine.InitializeStateList ();
currentMachine.InitializeViewList (termType);
currentMachine.ExecuteMachine (SIGNON);

}// try
catch (const _com_error& ce) {
}// catch (const _com_error& ce)

CoUninitialize ();
}// if (SUCCEEDED (CoInitialize (NULL))

return 0;
}

//Returns the raw terminal type of the device
int TerminalType()
{
IRFTerminalPtr termIface(__uuidof(RFTERMINAL));

termIface->ReadTerminalInfo ();

return termIface->RawTerminalType();

}CWaveLinkPMFSM.cpp

CWaveLinkPMFSM.cpp

///
//
//CWaveLinkPMFSM.cpp - Derived off CFSMBase, this adds methods
that
//populate the stateList and viewList.
//

#include "CSignonSt8.h"
#include "CErrorSt8.h"
#include "CMenuSt8.h"
#include "CSignonDefaultView.h"
#include "CErrorDefaultView.h"
#include "CMenuDefaultView.h"

Chapter 6: Writing Applications for Multiple UIs 77
#include "./Debug/WaveLink.tlh"
#include "CMenuPenView.h"
#include "CSignonPenView.h"
#include "CWaveLinkPMFSM.h"

//Add the three states to the stateList object.
void CWaveLinkPMFSM::InitializeStateList ()
{
stateList.push_back (new CSignonSt8(this));
stateList.push_back (new CErrorSt8());
stateList.push_back (new CMenuSt8(this));
}

//Add state views based on ui type to the viewList object.
void CWaveLinkPMFSM::InitializeViewList (int uiType)
{
switch(uiType)
{
case PALM_PILOT:
case CE2740:
case CE7200:
case CE7540:
case INTERMEC:
case WINDOWS:
case PPC:
case HPC:
case HPCPRO:
viewList.push_back (new CSignonPenView());
viewList.push_back (new CErrorDefaultView());
viewList.push_back (new CMenuPenView());
break;
default:
viewList.push_back (new CSignonDefaultView());
viewList.push_back (new CErrorDefaultView());
viewList.push_back (new CMenuDefaultView());
break;
}
}

//Cleanup
CWaveLinkPMFSM::~CWaveLinkPMFSM ()
{
for(int i=0; i < 3; i++)
{
delete viewList[i];
delete stateList[i];

78 Wavelink Studio COM
}
}

CFSMBase.cpp

///
//
//CFSMBase.cpp - Implementation of the finite state machine
//base class. ExecuteMachine finds and executes the views and
//states.
//ParseStateList & View returns the correct state ref based on
it's
//ID.
//

#include "CFSMBase.h"

//Empty CTOR
CFSMBase::CFSMBase()
{
}

void CFSMBase::ExecuteMachine(int initialState)
{
int nextState = initialState;
CStateBase* currentState;
CPresentationBase* currentView;

while(nextState != -1)
{
currentView = ParseViewList (nextState);
currentState = ParseStateList (nextState);

currentView->ExecuteView (currentState);
nextState = currentState->ExecuteState ();
}//end while(nextState != -1)

}

//Return reference to state indicated by id
CStateBase* CFSMBase::ParseStateList (int stateID)
{
CStateBase* tempState;

for(int lcv = 0; lcv < stateList.size (); lcv++)

Chapter 6: Writing Applications for Multiple UIs 79
{
tempState = stateList[lcv];

if(tempState->StateID() == stateID)
return tempState;
}

return NULL;
}

//Return reference to view indicated by id
CPresentationBase* CFSMBase::ParseViewList(int stateID)
{
CPresentationBase* tempView;

for(int lcv = 0; lcv < viewList.size (); lcv++)
{
tempView = viewList[lcv];

if(tempView->StateID() == stateID)
return tempView;
}

return NULL;

}

CStateList.cpp

///
//
//CStateList.cpp - Derived from vector, holds CStateBase refs
//

#include "CStateList.h"

//Default CTOR
CStateList::CStateList()

80 Wavelink Studio COM
{
}

CPresentationList.cpp

///
//
//CPresentationList.cpp - Class is derived from vector and holds
//presentation views.
//

#include "CPresentationList.h"

//Default CTOR
CPresentationList::CPresentationList()
{
}

CPresentationBase.cpp

///
/
//CPresentationBase - Base class for presentation views
//

#include "CPresentationBase.h"

//CTOR initializes stored variable to false. This variable is
used //to determine whether a screen needs
//to be pushed or restored.
CPresentationBase::CPresentationBase ()
{
stored = false;
}

CStateBase.cpp

///
/
//CStateBase.cpp - Base class for state objects, no
implementation
//

#include "CStateBase.h"

//Default CTOR
CStateBase::CStateBase()

Chapter 6: Writing Applications for Multiple UIs 81
{
}

82 Wavelink Studio COM

Index 83
Index
A
AddBarcode method 30
AddOption method 40
AddTitleLine method 40
AddTone method 36
application navigation 38
automating the workflow 27
autosize 46

B
bar code configurations 18, 29

default 30
bar codes 27

using 31
BCDISABLED 30
bitmap widgets 48
button widget 46
BYCELL 53
BYPERCENTAGE 53
BYPIXEL 53

C
checkbox widgets 48
classes

presentation views 73
states 74

Clear method 48
ClearBarcode method 30
ClearTones method 36
COM Development Library

see Wavelink Development Library
COM-based exceptions 11
conditions for returning input 18
conventions 2
CreateButton method 46
CreateField method 46
CreateMenubar method 52
CreatePopupTrigger method 51

cycle count application 27
adding bar code symbologies 29
adding tones 36
designing 27
using bar code symbologies 31

D
DefaultCoordinateType property 54
DeleteAllWidgets method 46
DeleteBarcodeFile 35
DeleteMenu method 42
DeleteWidgets method 46
dialog boxes 49
disabled widgets 54
Display method 42
display sizes 57
DisplayDialog method 50
displaying data 15
DisplayText property 50
document conventions 2
DoMenu method 41

E
Enable method 55
EnableWidgets method 55
error handling 11
exceptions 11

F
field widget 46
file extensions 14
Finite State Machine 62

classes 67
implementing 70
source files 76, 78

flushing output 24
Focus method 55
function keys 38

84 Wavelink Studio COM
G
GetEvent 25
GetEvent method 48
GUI devices 57

H
handling application errors 11
hidden widgets 54
high speed display 23

storing a screen 24
storing screen templates 25

hotspot widgets 48

I
I/O techniques 13

handling out-of-range devices 13
optimizing RF traffic 14

InitialFlags property 54
input

changing return conditions 21
controlling content 20
controlling input type 20
formatting 21
setting a timeout 22
types of 19

input modes 20
input type 19
Insert method 52

L
label widgets 48
LastBarcodeType method 33
LastExtendedType method 48, 53
LastInputType method 19

M
menu configurations 40
menubar widgets 51
menu-based widgets 50
message boxes 42

Model-View-Controller paradigm 60
multiple UIs 57

device types 58
Finite State Machine 62
general programming techniques 57
Model-View-Controller paradigm 60
object-oriented programming

techniques 59
screen dimensions 57

N
navigation 38

O
object-oriented programming 59
out-of-range devices 13
output buffer 24
output modes 15

P
PlayTone method 37
popup trigger widgets 50
Port Monitors 3
presentation views 67, 73
processing returned input 19
Program Manager 60

C++ source files 75
container classes 67, 79, 80
Finite State Machine classes 67
initializing the application 64
main program loop 70
presentation view classes 73
source files 63
starting the Finite State Machine 64
state classes 74

PullBarcode 35
PullScreen 23
PushScreen 23

Index 85
R
RawTerminalType method 58
repeater button widgets 48
RestoreScreen 23
RF packets 14
RF traffic 14
RFBarcode object 5, 29
RFDeleteFile method 25
RFError object 6, 42
RFFile object 5, 25
RFInput method 16

input modes 20
input timeout 22
invoking 16
processing input 19
returning input 18

RFIO object 5, 15, 16
RFMenu object 6, 40, 50
RFPrint method 15
RFTerminal object 6, 57, 64
RFTone object 6, 36

S
scan-based applications 27
screen dimensions 57
screen templates 25
scribble pad 49
selector trigger widgets 48
SetInputTimeout method 22
SetMessageLine method 42
Show method 54
ShowWidgets method 54
signature capture 49
source files 75
state list 67
states 67, 74
StoreBarcode method 30
StoreMenu method 41
StoreTones method 37

StoreWidgets method 47
storing a screen 24
storing files 14

T
Terminal Height method 57
TerminalWidth method 58
tone configurations 36

V
view list 67
views

see presentation views

W
Wavelink Client 4
Wavelink Development Library 5

referencing the COM library 9
Wavelink Program Manager

see Program Manager
Wavelink Server 3
Wavelink Studio 3
WaveLinkFactory object 6, 45
WaveLinkMenubarInfo object 6, 52
WaveLinkScribblePad object 6, 49
WaveLinkSignon object 6
WaveLinkWidget object 6, 45, 53, 54, 55
WaveLinkWidgetCollection object 7, 45
widget objects 6
WidgetID method 49
widgets 45

dialog-boxes 49
handling events 48
hiding and disabling 54
menu-based 50
positioning 53
setting the focus 55
transactions 53
unique identifiers 49
using 45

86 Wavelink Studio COM
WLALPHA_ONLY 21
WLBACKLIGHT 22
WLCLEAR 15
WLCLR_INPUT_BUFFER 22, 43
WLCLREOLN 35
WLCOMMANDTYPE 19, 38
WLDISABLE_FKEYS 20
WLDISABLE_KEY 20
WLDISABLE_SCAN 20
WLECHO_ASTERISK 21
WLFLUSHOUTPUT 24
WLFORCE_ENTRY 21
WLIGNORE_CRLF 22
WLKEYTYPE 19
WLNO_RETURN_BKSP 21
WLNO_RETURN_FILL 21
WLNUMERIC_ONLY 21
WLREVERSE 15
WLSCANTYPE 19
WLSUPPRESS_ECHO 22
WLTIMEDOUT 22

	Table of Contents
	Chapter 1: Introduction
	About this Document
	Assumptions
	Document Conventions
	Additional Information

	About Wavelink Studio COM
	Wavelink Server
	Wavelink Client
	Supported Devices

	Wavelink Development Library
	Widget Objects

	Chapter 2: Application Frameworks
	Referencing the Wavelink COM Development Library
	Including WaveLink Objects in Visual Basic 6.0 Projects
	Including Wavelink Objects in other COM Languages

	Chapter 3: Error Handling
	Chapter 4: I/O Techniques
	Handling Out-of-range Devices
	Optimizing RF Traffic
	Displaying Data on the Device Screen
	Using RFInput
	Invoking RFInput
	Waiting for User Input
	Processing Returned Input
	Input Modes
	Input Timeouts

	Using High Speed Display
	Storing Screens
	Storing Screen Templates

	Automating the Workflow
	Designing the Application
	Adding Bar Code Symbologies to your Applications
	Using Bar Code Symbologies
	Adding Tones to Your Applications

	Navigating the Application
	Using Function Keys
	Using Menus

	Using Message Boxes

	Chapter 5: Widgets
	Using Widgets
	Handling Events
	Using Widget-based Dialog Boxes
	Using Menu-based Widgets

	Widget Transactions
	Positioning Widgets
	Hiding and Disabling Widgets
	Setting the Focus

	Chapter 6: Writing Applications for Multiple UIs
	General Techniques
	Returning the Screen Dimensions
	Returning the Device Type

	Object-Oriented Techniques
	Program Overview
	Model-View-Controller Paradigm
	Finite State Machines
	Program Source Files

	Initializing the Application & Starting the Finite State Machine
	Finite State Machine Classes
	Populating the State List and View List
	Implementing the Finite State Machine

	Presentation View Classes
	State Classes
	C++ Source Files
	WaveLinkPM.cpp
	CWaveLinkPMFSM.cpp
	CFSMBase.cpp
	CStateList.cpp
	CPresentationList.cpp
	CPresentationBase.cpp
	CStateBase.cpp

	Index

